Чему равна боковая и полная поверхность призмы. Площадь основания призмы: от треугольной до многоугольной

«Урок теорема Пифагора» - Теорема Пифагора. Определить вид четырехугольника KMNP. Разминка. Знакомства с теоремой. Определить вид треугольника: План урока: Исторический экскурс. Решение простейших задач. И обрете лестницу долготою 125стоп. Вычислите высоту CF трапеции ABCD. Доказательство. Показ картинок. Доказательство теоремы.

«Объём призмы» - Понятие призмы. Прямая призма. Объем исходной призмы равен произведению S · h. Как найти объем прямой призмы? Призму можно разбить на прямые треугольные призмы с высотой h. Проведение высоты треугольника ABC. Решение задачи. Цели урока. Основные шаги при доказательстве теоремы прямой призмы? Изучение теоремы об объеме призмы.

«Многогранники призма» - Дайте определение многогранника. DABC – тетраэдр, выпуклый многогранник. Применение призм. Где применяются призмы? ABCDMP – октаэдр, составлен из восьми треугольников. ABCDA1B1C1D1 – параллелепипед, выпуклый многогранник. Выпуклый многогранник. Понятие многогранника. Многогранник А1А2..АnB1B2..Bn- призма.

«Призма 10 класс» - Призмой называется многогранник у которого грани находятся в параллельных плоскостях. Применение призмы в быту. Sбок.= Pоснован. + h Для прямой призмы: Sп.п = Pоснов. h + 2Sоснов. Наклонная. Правильная. Прямая. Призма. Формулы нахождения площади. Применение призмы в архитектуре. Sп.п = Sбок.+2Sоснован.

«Доказательство теоремы Пифагора» - Геометрическое доказательство. Значение теоремы Пифагора. Теорема Пифагора. Доказательство Евклида. «В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов». Доказательства теоремы. Значение теоремы состоит в том, что из неё или с её помощью можно вывести большинство теорем геометрии.

Определение 1. Призматическая поверхность
Теорема 1. О параллельных сечениях призматической поверхности
Определение 2. Перпендикулярное сечение призматической поверхности
Определение 3. Призма
Определение 4. Высота призмы
Определение 5. Прямая призма
Теорема 2. Площадь боковой поверхности призмы

Параллелепипед :
Определение 6. Параллелепипед
Теорема 3. О пересечении диагоналях параллелепипеда
Определение 7. Прямой параллелепипед
Определение 8. Прямоугольный параллелепипед
Определение 9. Измерения параллелепипеда
Определение 10. Куб
Определение 11. Ромбоэдр
Теорема 4. О диагоналях прямоугольного параллелепипеда
Теорема 5. Объем призмы
Теорема 6. Объем прямой призмы
Теорема 7. Объем прямоугольного параллелепипеда

Призмой называется многогранник, у которого две грани (основания) лежат в параллельных плоскостях, а ребра, не лежащие в этих гранях, параллельны между собой.
Грани, отличные от оснований, называются боковыми .
Стороны боковых граней и оснований называются ребрами призмы , концы ребер называются вершинами призмы. Боковыми ребрами называются ребра, не принадлежащие основаниям. Объединение боковых граней называется боковой поверхностью призмы , а объединение всех граней называется полной поверхностью призмы. Высотой призмы называется перпендикуляр, опущенный из точки верхнего основания на плоскость нижнего основания или длина этого перпендикуляра. Прямой призмой называется призма, у которой боковые ребра перпендикулярны плоскостям оснований. Правильной называется прямая призма (Рис.3), в основании которой лежит правильный многоугольник.

Обозначения:
l - боковое ребро;
P - периметр основания;
S o - площадь основания;
H - высота;
P ^ - периметр перпендикулярного сечения;
S б - площадь боковой поверхности;
V - объем;
S п - площадь полной поверхности призмы.

V = SH
S п = S б + 2S о
S б = P ^ l

Определение 1 . Призматической поверхностью называется фигура, образованная частями нескольких плоскостей, параллельных одной прямой ограниченными теми прямыми, по которым эти плоскости последовательно пересекаются одна с другой*; эти прямые параллельны между собой и называются рёбрами призматической поверхности .
*При этом предполагается, что каждые две последовательные плоскости пересекаются и что последняя плоскость пересекает первую

Теорема 1 . Сечения призматической поверхности плоскостями, параллельными между собой (но не параллельными её рёбрам), представляют собой равные многоугольники.
Пусть ABCDE и A"B"C"D"E" - сечения призматической поверхности двумя параллельными плоскостями. Чтобы убедиться, что эти два многоугольника равны, достаточно показать, что треугольники ABC и А"В"С" равны и имеют одинаковое направление вращения и что то же имеет место и для треугольников ABD и A"B"D", ABE и А"В"Е". Но соответственные стороны этих треугольников параллельны (например АС параллельно А"С") как линии пересечения некоторой плоскости с двумя параллельными плоскостями; отсюда следует, что эти стороны равны (например АС равно А"С") как противоположные стороны параллелограмма и что углы, образованные этими сторонами, равны и имеют одинаковое направление.

Определение 2 . Перпендикулярным сечением призматической поверхности называется сечение этой поверхности плоскостью, перпендикулярной к её рёбрам. На основании предыдущей теоремы все перпендикулярные сечения одной и той же призматической поверхности будут равными многоугольниками.

Определение 3 . Призмой называется многогранник, ограниченный призматической поверхностью и двумя плоскостями, параллельными между собой (но непараллельными рёбрам призматической поверхности)
Грани, лежащие в этих последних плоскостях, называются основаниями призмы ; грани, принадлежащие призматической поверхности, - боковыми гранями ; рёбра призматической поверхности - боковыми рёбрами призмы . В силу предыдущей теоремы, основания призмы - равные многоугольники . Все боковые грани призмы - параллелограммы ; все боковые рёбра равны между собой.
Очевидно, что если дано основание призмы ABCDE и одно из рёбер АА" по величине и по направлению, то можно построить призму, проводя рёбра ВВ", СС", .., равные и параллельные ребру АА".

Определение 4 . Высотой призмы называется расстояние между плоскостями её оснований (НH").

Определение 5 . Призма называется прямой, если её основаниями служат перпендикулярные сечения призматической поверхности. В этом случае высотой призмы служит, конечно, её боковое ребро ; боковые грани будут прямоугольниками .
Призмы можно классифицировать по числу боковых граней, равному числу сторон многоугольника, служащего её основанием. Таким образом, призмы могут быть треугольные, четырёхугольные, пятиугольные и т.д.

Теорема 2 . Площадь боковой поверхности призмы равна произведению бокового ребра на периметр перпендикулярного сечения.
Пусть ABCDEA"B"C"D"E" - данная призма и abcde - её перпендикулярное сечение, так что отрезки ab, bc, .. перпендикулярны к её боковым ребрам. Грань АВА"В" является параллелограммом; его площадь равна произведению основания АА" на высоту, которая совпадает с аb; площадь грани ВСВ"С" равна произведению основания ВВ" на высоту bc и т. д. Следовательно, боковая поверхность (т. е. сумма площадей боковых граней) равна произведению бокового ребра, иначе говоря, общей длины отрезков АА", ВВ", .., на сумму ab+bc+cd+de+еа.

С помощью этого видеоурока все желающие смогут самостоятельно познакомиться с темой «Понятие многогранника. Призма. Площадь поверхности призмы». В ходе занятия учитель расскажет о том, что представляют собой такие геометрические фигуры, как многогранник и призмы, даст соответствующие определения и объяснит их суть на конкретных примерах.

С помощью этого урока все желающие смогут самостоятельно познакомиться с темой «Понятие многогранника. Призма. Площадь поверхности призмы».

Определение . Поверхность, составленную из многоугольников и ограничивающую некоторое геометрическое тело, будем называть многогранной поверхностью или многогранником.

Рассмотрим следующие примеры многогранников:

1. Тетраэдр ABCD - это поверхность, составленная из четырех треугольников: АВС , ADB , BDC и ADC (рис. 1).

Рис. 1

2. Параллелепипед ABCDA 1 B 1 C 1 D 1 - это поверхность, составленная из шести параллелограммов (рис. 2).

Рис. 2

Основными элементами многогранника являются грани, ребра, вершины.

Грани - это многоугольники, составляющие многогранник.

Ребра - это стороны граней.

Вершины - это концы ребер.

Рассмотрим тетраэдр ABCD (рис. 1). Укажем его основные элементы.

Грани : треугольники АВС, ADB, BDC, ADC .

Ребра : АВ, АС, ВС, DC , AD , BD .

Вершины : А, В, С, D .

Рассмотрим параллелепипед ABCDA 1 B 1 C 1 D 1 (рис. 2).

Грани : параллелограммы АА 1 D 1 D, D 1 DСС 1 , ВВ 1 С 1 С, АА 1 В 1 В, ABCD, A 1 B 1 C 1 D 1 .

Ребра : АА 1 , ВВ 1 , СС 1 , DD 1 , AD, A 1 D 1 , B 1 C 1 , BC, AB, A 1 B 1 , D 1 C 1 , DC.

Вершины : A, B, C, D, A 1 ,B 1 ,C 1 ,D 1 .

Важным частным случаем многогранника является призма.

АВСА 1 В 1 С 1 (рис. 3).

Рис. 3

Равные треугольники АВС и А 1 В 1 С 1 расположены в параллельных плоскостях α и β так, что ребра АА 1 , ВВ 1 , СС 1 параллельны.

То есть АВСА 1 В 1 С 1 - треугольная призма, если:

1) Треугольники АВС и А 1 В 1 С 1 равны.

2) Треугольники АВС и А 1 В 1 С 1 расположены в параллельных плоскостях α и β: ABC А 1 B 1 C (α ║ β).

3) Ребра АА 1 , ВВ 1 , СС 1 параллельны.

АВС и А 1 В 1 С 1 - основания призмы.

АА 1 , ВВ 1 , СС 1 - боковые ребра призмы.

Если с произвольной точки Н 1 одной плоскости (например, β) опустить перпендикуляр НН 1 на плоскость α, то этот перпендикуляр называется высотой призмы.

Определение . Если боковые ребра перпендикулярны к основаниям, то призма называется прямой, а в противном случае - наклонной.

Рассмотрим треугольную призму АВСА 1 В 1 С 1 (рис. 4). Эта призма - прямая. То есть, ее боковые ребра перпендикулярны основаниям.

Например, ребро АА 1 перпендикулярно плоскости АВС . Ребро АА 1 является высотой этой призмы.

Рис. 4

Заметим, что боковая грань АА 1 В 1 В перпендикулярна к основаниям АВС и А 1 В 1 С 1 , так как она проходит через перпендикуляр АА 1 к основаниям.

Теперь рассмотрим наклонную призму АВСА 1 В 1 С 1 (рис. 5). Здесь боковое ребро не перпендикулярно плоскости основания. Если опустить из точки А 1 перпендикуляр А 1 Н на АВС , то этот перпендикуляр будет высотой призмы. Заметим, что отрезок АН - это проекция отрезка АА 1 на плоскость АВС .

Тогда угол между прямой АА 1 и плоскостью АВС это угол между прямой АА 1 и её АН проекцией на плоскость, то есть угол А 1 АН .

Рис. 5

Рассмотрим четырехугольную призму ABCDA 1 B 1 C 1 D 1 (рис. 6). Рассмотрим, как она получается.

1) Четырехугольник ABCD равен четырехугольнику A 1 B 1 C 1 D 1 : ABCD = A 1 B 1 C 1 D 1 .

2) Четырехугольники ABCD и A 1 B 1 C 1 D 1 ABC А 1 B 1 C (α ║ β).

3) Четырехугольники ABCD и A 1 B 1 C 1 D 1 расположены так, что боковые ребра параллельны, то есть: АА 1 ║ВВ 1 ║СС 1 ║DD 1 .

Определение . Диагональ призмы - это отрезок, соединяющий две вершины призмы, не принадлежащие одной грани.

Например, АС 1 - диагональ четырехугольной призмы ABCDA 1 B 1 C 1 D 1 .

Определение . Если боковое ребро АА 1 перпендикулярно плоскости основания, то такая призма называется прямой.

Рис. 6

Частным случаем четырёхугольной призмы является известный нам параллелепипед. Параллелепипед ABCDA 1 B 1 C 1 D 1 изображен на рис. 7.

Рассмотрим, как он устроен:

1) В основаниях лежат равные фигуры. В данном случае - равные параллелограммы ABCD и A 1 B 1 C 1 D 1 : ABCD = A 1 B 1 C 1 D 1 .

2) Параллелограммы ABCD и A 1 B 1 C 1 D 1 лежат в параллельных плоскостях α и β: ABC A 1 B 1 C 1 (α ║ β).

3) Параллелограммы ABCD и A 1 B 1 C 1 D 1 расположены таким образом, что боковые ребра параллельны между собой: АА 1 ║ВВ 1 ║СС 1 ║DD 1 .

Рис. 7

Из точки А 1 опустим перпендикуляр АН на плоскость АВС . Отрезок А 1 Н является высотой.

Рассмотрим, как устроена шестиугольная призма (рис. 8).

1) В основании лежат равные шестиугольники ABCDEF и A 1 B 1 C 1 D 1 E 1 F 1 : ABCDEF = A 1 B 1 C 1 D 1 E 1 F 1 .

2) Плоскости шестиугольников ABCDEF и A 1 B 1 C 1 D 1 E 1 F 1 параллельны, то есть основания лежат в параллельных плоскостях: ABC А 1 B 1 C (α ║ β).

3) Шестиугольники ABCDEF и A 1 B 1 C 1 D 1 E 1 F 1 расположены так, что все боковые ребра между собой параллельны: АА 1 ║ВВ 1 …║FF 1 .

Рис. 8

Определение . Если какое-нибудь боковое ребро перпендикулярно плоскости основания, то такая шестиугольная призма называется прямой.

Определение . Прямая призма называется правильной, если её основания - правильные многоугольники.

Рассмотрим правильную треугольную призму АВСА 1 В 1 С 1 .

Рис. 9

Треугольная призма АВСА 1 В 1 С 1 - правильная, это значит, что в основаниях лежат правильные треугольники, то есть все стороны этих треугольников равны. Также данная призма - прямая. Значит, боковое ребро перпендикулярно плоскости основания. А это значит, что все боковые грани - равные прямоугольники.

Итак, если треугольная призма АВСА 1 В 1 С 1 - правильная, то:

1) Боковое ребро перпендикулярно плоскости основания, то есть является высотой: AA 1 АВС .

2) В основании лежит правильный треугольник: ∆АВС - правильный.

Определение . Площадью полной поверхности призмы называется сумма площадей всех её граней. Обозначается S полн .

Определение . Площадью боковой поверхности называется сумма площадей всех боковых граней. Обозначается S бок .

Призма имеет два основания. Тогда площадь полной поверхности призмы:

S полн = S бок + 2S осн.

Площадь боковой поверхности прямой призмы равна произведению периметра основания на высоту призмы.

Доказательство проведем на примере треугольной призмы.

Дано : АВСА 1 В 1 С 1 - прямая призма, т. е. АА 1 АВС .

АА 1 = h.

Доказать : S бок = Р осн ∙ h.

Рис. 10

Доказательство .

Треугольная призма АВСА 1 В 1 С 1 - прямая, значит, АА 1 В 1 В, АА 1 С 1 С, ВВ 1 С 1 С - прямоугольники.

Найдем площадь боковой поверхности как сумму площадей прямоугольников АА 1 В 1 В, АА 1 С 1 С, ВВ 1 С 1 С:

S бок = АВ∙ h + ВС∙ h + СА∙ h = (AB + ВС + CА) ∙ h = P осн ∙ h.

Получаем, S бок = Р осн ∙ h, что и требовалось доказать.

Мы познакомились с многогранниками, призмой, её разновидностями. Доказали теорему о боковой поверхности призмы. На следующем уроке мы будем решать задачи на призму.

  1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М. : Мнемозина, 2008. - 288 с. : ил.
  2. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. - М.: Дрофа, 1999. - 208 с.: ил.
  3. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. - 6-е издание, стереотип. - М. : Дрофа, 008. - 233 с. :ил.
  1. Якласс ().
  2. Shkolo.ru ().
  3. Старая школа ().
  4. WikiHow ().
  1. Какое минимальное число граней может иметь призма? Сколько вершин, ребер у такой призмы?
  2. Существует ли призма, которая имеет в точности 100 ребер?
  3. Боковое ребро наклонено к плоскости основания под углом 60°. Найдите высоту призмы, если боковое ребро равно 6 см.
  4. В прямой треугольной призме все ребра равны. Площадь ее боковой поверхности составляет 27 см 2 . Найдите площадь полной поверхности призмы.

Определение. Призма - это многогранник, все вершины которого расположены в двух параллельных плоскостях, причем в этих же двух плоскостях лежат две грани призмы, представляющие собой равные многоугольники с соответственно параллельными сторонами, а все ребра, не лежащие в этих плоскостях, параллельны.

Две равные грани называются основаниями призмы (ABCDE, A 1 B 1 C 1 D 1 E 1) .

Все остальные грани призмы называются боковыми гранями (AA 1 B 1 B, BB 1 C 1 C, CC 1 D 1 D, DD 1 E 1 E, EE 1 A 1 A).

Все боковые грани образуют боковую поверхность призмы .

Все боковые грани призмы являются параллелограммами.

Ребра, не лежащие в основаниях, называются боковыми ребрами призмы(AA 1 , BB 1 , CC 1 , DD 1 , EE 1 ).

Диагональю призмы называется отрезок, концами которого служат две вершины призмы, не лежащие на одной ее грани (АD 1).

Длина отрезка, соединяющего основания призмы и перпендикулярного одновременно обоим основаниям,называется высотой призмы .

Обозначение: ABCDE A 1 B 1 C 1 D 1 E 1 . (Сначала в порядке обхода указывают вершины одного основания, а затем в том же порядке - вершины другого; концы каждого бокового ребра обозначают одинаковыми буквами, только вершины, лежащие в одном основании, обозначаются буквами без индекса, а в другом - с индексом)

Название призмы связывают с числом углов в фигуре, лежащей в ее основании, например, на рисунке 1 в основании лежит пятиугольник, поэтому призму называют пятиугольной призмой . Но т.к. у такой призмы 7 граней, то она семигранник (2 грани - основания призмы, 5 граней - параллелограммы, - ее боковые грани)

Среди прямых призм выделяется частный вид: правильные призмы.

Прямая призма называется правильной, если ее основания-правильные многоугольники.

У правильной призмы все боковые грани равные прямоугольники. Частным случаем призмы является параллелепипед.

Параллелепипед

Параллелепипед - это четырехугольная призма, в основании которой лежит параллелограмм (наклонный параллелепипед).Прямой параллелепипед - параллелепипед, у которого боковые ребра перпендикулярны плоскостям основания.

Прямоугольный параллелепипед - прямой параллелепипед, основанием которого является прямоугольник.

Свойства и теоремы:


Некоторые свойства параллелепипеда аналогичны известным свойствам параллелограмма.Прямоугольный параллелепипед, имеющий равные измерения, называются кубом .У куба все грани равные квадраты.Квадрат диагонали, равен сумме квадратов трех его измерений

,

где d - диагональ квадрата;
a - сторона квадрата.

Представление о призме дают:

  • различные архитектурные сооружения;
  • детские игрушки;
  • упаковочные коробки;
  • дизайнерские предметы и т.д.





Площадь полной и боковой поверхности призмы

Площадь полной поверхности призмы называется сумма площадей всех ее гранейПлощадь боковой поверхности называется сумма площадей ее боковых гранейТ.к. основания призмы - равные многоугольник, то их площади равны. Поэтому

S полн = S бок + 2S осн ,

где S полн - площадь полной поверхности,S бок -площадь боковой поверхности, S осн - площадь основания

Площадь боковой поверхности прямой призмы равна произведению периметра основания на высоту призмы .

S бок = P осн * h,

где S бок -площадь боковой поверхности прямой призмы,

P осн - периметр основания прямой призмы,

h - высота прямой призмы, равная боковому ребру.

Объем призмы

Объем призмы равен произведению площади основания на высоту.

 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!