Вычисление неопределенного интеграла по частям. Калькулятор онлайн.Вычислить неопределенный интеграл (первообразную)

Решение интегралов - задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл... Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы? Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать интегралы и почему без этого никак нельзя обойтись.

Изучаем понятие "интеграл"

Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц , но суть вещей не изменилась. Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о , необходимые и для понимания интегралов, уже есть у нас в блоге.

Неопределенный интеграл

Пусть у нас есть какая-то функция f(x) .

Неопределенным интегралом функции f(x) называется такая функция F(x) , производная которой равна функции f(x) .

Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как читайте в нашей статье.


Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.

Простой пример:

Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями:


Определенный интеграл

Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.

В качестве примера представим себе график какой-нибудь функции. Как найти площадь фигуры, ограниченной графиком функции?


С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:


Точки а и b называются пределами интегрирования.


Бари Алибасов и группа "Интеграл"

Кстати! Для наших читателей сейчас действует скидка 10% на

Правила вычисления интегралов для чайников

Свойства неопределенного интеграла

Как решать неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.

  • Производная от интеграла равна подынтегральной функции:

  • Константу можно выносить из-под знака интеграла:

  • Интеграл от суммы равен сумме интегралов. Верно также для разности:

Свойства определенного интеграла

  • Линейность:

  • Знак интеграла изменяется, если поменять местами пределы интегрирования:

  • При любых точках a , b и с :

Мы уже выяснили, что определенный интеграл - это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:

Примеры решения интегралов

Ниже рассмотрим несколько примеров нахождения неопределенных интегралов. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.


Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.

Калькулятор решает интегралы c описанием действий ПОДРОБНО на русском языке и бесплатно!

Решение неопределённых интегралов

Это онлайн сервис в один шаг :

Решение определённых интегралов

Это онлайн сервис в один шаг :

  • Ввести подинтегральное выражение (подинтегральную функцию)
  • Ввести нижний предел для интеграла
  • Ввести верхний предел для интеграла

Решение двойных интегралов

  • Ввести подинтегральное выражение (подинтегральную функцию)

Решение несобственных интегралов

  • Ввести подинтегральное выражение (подинтегральную функцию)
  • Введите верхнюю область интегрирования (или + бесконечность)
  • Ввести нижнюю область интегрирования (или - бесконечность)
Перейти: Онлайн сервис "Несобственный интеграл"

Решение тройных интегралов

  • Ввести подинтегральное выражение (подинтегральную функцию)
  • Ввести нижний и верхний пределы для первой области интегрирования
  • Ввести нижний и верхний предел для второй области интегрирования
  • Ввести нижний и верхний предел для третьей области интегрирования
Перейти: Онлайн сервис "Тройной интеграл"

Данный сервис позволяет проверить свои вычисления на правильность

Возможности

  • Поддержка всех возможных математических функций: синус, косинус, экспонента, тангенс, котангенс, корень квадратный и кубический, степени, показательные и другие.
  • Есть примеры для ввода, как для неопределённых интегралов, так и для несобственных и определённых.
  • Исправляет ошибки в ведённых вами выражениях и предлагает свои варианты для ввода.
  • Численное решение для определённых и несобственных интегралов (в том числе для двойных и тройных интегралов).
  • Поддержка комплексных чисел, а также различных параметров (вы можете указывать в подинтегральном выражении не только переменную интегрирования, но и другие переменные-параметры)

Интегрирование по частям - метод, применяемый для решения определенных и неопределенных интегралов, когда одна из подынтегральных функций легко интегрируема, а другая дифференцируема. Достаточно распространенный метод нахождения интегралов как неопределенных, так и определенных. Главный признак, когда нужно использовать его - это состоящая из произведения двух функций некоторая функция, которую нельзя проинтегрировать в упор.

Формула

Для того, чтобы успешно использовать данный метод необходимо разобрать и выучить формулы.

Формула интегрирования по частям в неопределенном интеграле:

$$ \int udv = uv - \int vdu $$

Формула интегрирования по частям в определенном интеграле:

$$ \int \limits_{a}^{b} udv = uv \bigg |_{a}^{b} - \int \limits_{a}^{b} vdu $$

Примеры решений

Рассмотрим на практике примеры решений интегрирования по частям, которые часто предлагаются преподавателями на контрольных работах. Обратите внимание, что под значком интеграла стоит произведение двух функций. Это как признак того, что для решения подойдет данный метод.

Пример 1
Найти интеграл $ \int xe^xdx $
Решение

Видим, что подынтегральная функция состоит из двух функций, одна из которых при дифференцировании моментально превращается в единицу, а другая легко интегрируется. Для решения интеграла воспользуемся методом интегрирования по частям. Положим, $ u = x \rightarrow du=dx $, а $ dv = e^x dx \rightarrow v=e^x $

Подставляем найденные значения в первую формулу интегрирования и получаем:

$$ \int xe^x dx = xe^x - \int e^x dx = xe^x - e^x + C $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ

$$ \int xe^x dx = xe^x - e^x + C $$

Пример 4
Вычислить интеграл $ \int \limits_0 ^1 (x+5) 3^x dx $
Решение

По аналогии с предыдущими решенными примерами разберемся какую функцию без проблем интегрировать, какую дифференцировать. Обращаем внимание, что если продифференцировать $ (x+5) $, то произойдет автоматическое преобразования этого выражения в единицу, что нам будет "на руку". Поэтом поступаем так:

$$ u=x+5 \rightarrow du=dx, dv=3^x dx \rightarrow v=\frac{3^x}{ln3} $$

Теперь все неизвестные функции стали найдены и могут быть поставлены во вторую формулу интегрирования по частям для определенного интеграла.

$$ \int \limits_0 ^1 (x+5) 3^x dx = (x+5) \frac{3^x}{\ln 3} \bigg |_0 ^1 - \int \limits_0 ^1 \frac{3^x dx}{\ln 3} = $$

$$ = \frac{18}{\ln 3} - \frac{5}{\ln 3} - \frac{3^x}{\ln^2 3}\bigg| _0 ^1 = \frac{13}{\ln 3} - \frac{3}{\ln^2 3}+\frac{1}{\ln^2 3} = \frac{13}{\ln 3}-\frac{4}{\ln^2 3} $$

Ответ
$$ \int\limits_0 ^1 (x+5)3^x dx = \frac{13}{\ln 3}-\frac{4}{\ln^2 3} $$

Функция F(x), дифференцируемая в данном промежутке X, называется первообразной для функции f(x), или интегралом от f(x), если для всякого x ∈X справедливо равенство:

F " (x) = f(x). (8.1)

Нахождение всех первообразных для данной функции называется ее интегрированием. Неопределенным интегралом функции f(x) на данном промежутке Х называется множество всех первообразных функций для функции f(x); обозначение -

Если F(x) - какая-нибудь первобразная для функции f(x), то ∫ f(x)dx = F(x) + C, (8.2)

где С- произвольная постоянная.

Таблица интегралов

Непосредственно из определения получаем основные свойства неопределенного интеграла и список табличных интегралов:

1) d∫f(x)dx=f(x)

2)∫df(x)=f(x)+C

3) ∫af(x)dx=a∫f(x)dx (a=const)

4) ∫(f(x)+g(x))dx = ∫f(x)dx+∫g(x)dx

Список табличных интегралов

1. ∫x m dx = x m+1 /(m + 1) +C; (m ≠ -1)

3.∫a x dx = a x /ln a + C (a>0, a ≠1)

4.∫e x dx = e x + C

5.∫sin x dx = cosx + C

6.∫cos x dx = - sin x + C

7. = arctg x + C

8. = arcsin x + C

10. = - ctg x + C

Замена переменной

Для интегрирования многих функций применяют метод замены переменной или подстановки, позволяющий приводить интегралы к табличной форме.

Если функция f(z) непрерывна на [α,β], функция z =g(x) имеет на непрерывную производную и α ≤ g(x) ≤ β, то

∫ f(g(x)) g " (x) dx = ∫f(z)dz, (8.3)

причем после интегрирования в правой части следует сделать подстановку z=g(x).

Для доказательства достаточно записать исходный интеграл в виде:

∫ f(g(x)) g " (x) dx = ∫ f(g(x)) dg(x).

Например:

Метод интегрирования по частям

Пусть u = f(x) и v = g(x) - функции, имеющие непрерывные . Тогда, по произведения,

d(uv))= udv + vdu или udv = d(uv) - vdu.

Для выражения d(uv) первообразной, очевидно, будет uv, поэтому имеет место формула:

∫ udv = uv - ∫ vdu (8.4.)

Эта формула выражает правило интегрирования по частям . Оно приводит интегрирование выражения udv=uv"dx к интегрированию выражения vdu=vu"dx.

Пусть, например, требуется найти ∫xcosx dx. Положим u = x, dv = cosxdx, так что du=dx, v=sinx. Тогда

∫xcosxdx = ∫x d(sin x) = x sin x - ∫sin x dx = x sin x + cosx + C.

Правило интегрирования по частям имеет более ограниченную область применения, чем замена переменной. Но есть целые классы интегралов, например,

∫x k ln m xdx, ∫x k sinbxdx, ∫ x k cosbxdx, ∫x k e ax и другие, которые вычисляются именно с помощью интегрирования по частям.

Определенный интеграл

Понятие определенного интеграла вводится следующим образом. Пусть на отрезке определена функция f(x). Разобьем отрезок [ a,b] на n частей точками a= x 0 < x 1 <...< x n = b. Из каждого интервала (x i-1 , x i) возьмем произвольную точку ξ i и составим сумму f(ξ i) Δx i где
Δ x i =x i - x i-1 . Сумма вида f(ξ i)Δ x i называется интегральной суммой , а ее предел при λ = maxΔx i → 0, если он существует и конечен, называется определенным интегралом функции f(x) от a до b и обозначается:

F(ξ i)Δx i (8.5).

Функция f(x) в этом случае называется интегрируемой на отрезке , числа a и b носят название нижнего и верхнего предела интеграла .

Для определенного интеграла справедливы следующие свойства:

4), (k = const, k∈R);

5)

6)

7) f(ξ)(b-a) (ξ∈).

Последнее свойство называется теоремой о среднем значении .

Пусть f(x) непрерывна на . Тогда на этом отрезке существует неопределенный интеграл

∫f(x)dx = F(x) + C

и имеет место формула Ньютона-Лейбница , cвязывающая определенный интеграл с неопределенным:

F(b) - F(a). (8.6)

Геометрическая интерпретация: определенный интеграл представляет собой площадь криволинейной трапеции, ограниченной сверху кривой y=f(x), прямыми x = a и x = b и отрезком оси Ox .

Несобственные интегралы

Интегралы с бесконечными пределами и интегралы от разрывных (неограниченных) функций называются несобственными. Несобственные интегралы I рода - это интегралы на бесконечном промежутке, определяемые следующим образом:

(8.7)

Если этот предел существует и конечен, то называется сходящимся несобственным интегралом от f(x) на интервале [а,+ ∞), а функцию f(x) называют интегрируемой на бесконечном промежутке [а,+ ∞). В противном случае про интеграл говорят, что он не существует или расходится .

Аналогично определяются несобственные интегралы на интервалах (-∞,b] и (-∞, + ∞):

Определим понятие интеграла от неограниченной функции. Если f(x) непрерывна для всех значений x отрезка , кроме точки с, в которой f(x) имеет бесконечный разрыв, то несобственным интегралом II рода от f(x) в пределах от a до b называется сумма:

если эти пределы существуют и конечны. Обозначение:

Примеры вычисления интегралов

Пример 3.30. Вычислить ∫dx/(x+2).

Решение. Обозначим t = x+2, тогда dx = dt, ∫dx/(x+2) = ∫dt/t = ln|t| + C = ln|x+2| + C .

Пример 3.31 . Найти ∫ tgxdx.

Решение. ∫ tgxdx = ∫sinx/cosxdx = - ∫dcosx/cosx. Пусть t=cosx, тогда ∫ tgxdx = -∫ dt/t = - ln|t| + C = -ln|cosx|+C.

Пример 3.32 . Найти ∫dx/sinx

Решение.

Пример 3.33. Найти .

Решение. = .

Пример 3.34 . Найти ∫arctgxdx.

Решение. Интегрируем по частям. Обозначим u=arctgx, dv=dx. Тогда du = dx/(x 2 +1), v=x, откуда ∫arctgxdx = xarctgx - ∫ xdx/(x 2 +1) = xarctgx + 1/2 ln(x 2 +1) +C; так как
∫xdx/(x 2 +1) = 1/2 ∫d(x 2 +1)/(x 2 +1) = 1/2 ln(x 2 +1) +C.

Пример 3.35 . Вычислить ∫lnxdx.

Решение. Применяя формулу интегрирования по частям, получим:
u=lnx, dv=dx, du=1/x dx, v=x. Тогда ∫lnxdx = xlnx - ∫x 1/x dx =
= xlnx - ∫dx + C= xlnx - x + C.

Пример 3.36 . Вычислить ∫e x sinxdx.

Решение. Обозначим u = e x , dv = sinxdx, тогда du = e x dx, v =∫sinxdx= - cosx → ∫ e x sinxdx = - e x cosx + ∫ e x cosxdx. Интеграл ∫e x cosxdx также интегрируем по частям: u = e x , dv = cosxdx, du=e x dx, v=sinx. Имеем:
∫ e x cosxdx = e x sinx - ∫ e x sinxdx. Получили соотношение ∫e x sinxdx = - e x cosx + e x sinx - ∫ e x sinxdx, откуда 2∫e x sinx dx = - e x cosx + e x sinx + С.

Пример 3.37. Вычислить J = ∫cos(lnx)dx/x.

Решение. Так как dx/x = dlnx, то J= ∫cos(lnx)d(lnx). Заменяя lnx через t, приходим к табличному интегралу J = ∫ costdt = sint + C = sin(lnx) + C.

Пример 3.38 . Вычислить J = .

Решение. Учитывая, что = d(lnx), производим подстановку lnx = t. Тогда J = .

Пример 3.39 . Вычислить интеграл J = .

Решение. Имеем: . Поэтому =
=
=. вводится так sqrt(tan(x/2)).

А если в окне результата нажмете на Show steps в правом верхнем углу, то получите подробное решение.

Что такое интегрирование по частям? Чтобы освоить этот вид интегрирования, давайте для начала вспомним производную произведения:

${{\left(f\cdot g \right)}^{\prime }}={f}"\cdot g+f\cdot {g}"$

Спрашивается: ну и при чем тут интегралы? А давайте теперь проинтегрируем обе стороны этого уравнения. Так и запишем:

$\int{{{\left(f\cdot g \right)}^{\prime }}\text{d}x=}\int{{f}"\cdot g\,\text{d}x+\int{f\cdot {g}"\,\text{d}x}}$

Но что такое первообразная от штриха? Это просто сама функция, которая стоит внутри штриха. Так и запишем:

$f\cdot g=\int{{f}"\cdot g\,\text{d}x+\int{f\cdot {g}"\,\text{d}x}}$

В данном уравнении предлагаю выразить слагаемое. Имеем:

$\int{{f}"\cdot g\,\text{d}x=f\cdot g-\int{f\cdot {g}"\,\text{d}x}}$

Это и есть формула интегрирования по частям . Таким образом, мы, по сути, меняем местами производную и функцию. Если изначально у нас был интеграл от штриха, умноженной на что-либо, то затем получается интеграл от нового чего-либо, умноженной на штрих. Вот и все правило. На первый взгляд данная формула может показаться сложной и бессмысленной, но, на самом деле, она может значительно упрощать вычисления. Сейчас посмотрим.

Примеры вычисления интегралов

Задача 1. Вычислите:

\[\int{\ln x\,\text{d}x}\]\[\]

Перепишем выражение, добавив перед логарифмом 1:

\[\int{\ln x\,\text{d}x}=\int{1\cdot \ln x\,\text{d}x}\]

Мы имеем право сделать это, потому что ни число, ни функция не изменятся. Теперь сравним это выражение с тем, что у нас написано в формуле. В роли ${f}"$ выступает 1, так и запишем:

$\begin{align}& {f}"=1\Rightarrow f=x \\& g=\ln x\Rightarrow {g}"=\frac{1}{x} \\\end{align}$

Все эти функции есть в таблицах. Теперь, когда мы расписали все элементы, которые входят в наше выражение, перепишем данный интеграл по формуле интегрирования по частям:

\[\begin{align}& \int{1\cdot \ln x\,\text{d}x}=x\ln x-\int{x\cdot \frac{1}{x}\text{d}x}=x\ln x-\int{\text{d}x}= \\& =x\ln x-x+C=x\left(\ln x-1 \right)+C \\\end{align}\]

Все, интеграл найден.

Задача 2. Вычислите:

$\int{x{{\text{e}}^{-x}}\,\text{d}x=\int{x\cdot {{e}^{-x}}\,\text{d}x}}$

Если в роли производной, от которой нам нужно будет сейчас найти первообразную, мы возьмем $x$, то получим${{x}^{2}}$, и итоговое выражение будет содержать ${{x}^{2}}{{\text{e}}^{-x}}$.

Очевидно, задача не упрощается, поэтому мы поменяем местами множители под знаком интеграла:

$\int{x\cdot {{\text{e}}^{-x}}\,\text{d}x}=\int{{{\text{e}}^{-x}}\cdot x\,\text{d}x}$

А вот теперь вводим обозначения:

${f}"={{\text{e}}^{-x}}\Rightarrow f=\int{{{\text{e}}^{-x}}\,\text{d}x}=-{{\text{e}}^{-x}}$

Дифференцируем ${{\text{e}}^{-x}}$:

${{\left({{\text{e}}^{-x}} \right)}^{\prime }}={{\text{e}}^{-x}}\cdot {{\left(-x \right)}^{\prime }}=-{{\text{e}}^{-x}}$

Другими словами, сначала добавляется «минус», а затем обе стороны интегрируются:

\[\begin{align}& {{\left({{\text{e}}^{-x}} \right)}^{\prime }}=-{{\text{e}}^{-x}}\Rightarrow {{\text{e}}^{-x}}=-{{\left({{\text{e}}^{-x}} \right)}^{\prime }} \\& \int{{{\text{e}}^{-x}}\,\text{d}x}=-\int{{{\left({{\text{e}}^{-x}} \right)}^{\prime }}\text{d}x}=-{{\text{e}}^{-x}}+C \\\end{align}\]

Теперь разберёмся с функцией$g$:

$g=x\Rightarrow {g}"=1$

Считаем интеграл:

$\begin{align}& \int{{{\text{e}}^{-x}}\cdot x\,\text{d}x}=x\cdot \left(-{{\text{e}}^{-x}} \right)-\int{\left(-{{\text{e}}^{-x}} \right)\cdot 1\cdot \text{d}x}= \\& =-x{{\text{e}}^{-x}}+\int{{{\text{e}}^{-x}}\,\text{d}x}=-x{{\text{e}}^{-x}}-{{\text{e}}^{-x}}+C=-{{\text{e}}^{-x}}\left(x+1 \right)+C \\\end{align}$

Итак, мы выполнили второе интегрирование по частям.

Задача 3. Вычислите:

$\int{x\cos 3x\,\text{d}x}$

Что в этом случае брать за${f}"$ , а что за$g$? Если в роли производной будет выступать$x$ , то при интегрировании возникнет$\frac{{{x}^{2}}}{2}$, и никуда у нас первый множитель не пропадет — будет $\frac{{{x}^{2}}}{2}\cdot \cos 3x$. Поэтому опять поменяем множители местами:

$\begin{align}& \int{x\cos 3x\,\text{d}x}=\int{\cos 3x\cdot x\,\text{d}x} \\& {f}"=\cos 3x\Rightarrow f=\int{\cos 3x\,\text{d}x}=\frac{\sin 3x}{3} \\& g=x\Rightarrow {g}"=1 \\\end{align}$

Переписываем наше исходное выражение и раскладываем его по формуле интегрирования по частям:

\[\begin{align}& \int{\cos 3x\cdot x\ \text{d}x}=\frac{\sin 3x}{3}\cdot x-\int{\frac{\sin 3x}{3}\text{d}x}= \\& =\frac{x\sin 3x}{3}-\frac{1}{3}\int{\sin 3x\,\text{d}x}=\frac{x\sin 3x}{3}+\frac{\cos 3x}{9}+C \\\end{align}\]

Все, третья задача решена.

В заключение еще раз взглянем на формулу интегрирования по частям . Как мы выбираем, какой из множителей будет производной, а какой будет настоящей функцией? Критерий здесь всего один: элемент, который мы будем дифференцировать, должен давать либо «красивое» выражение, которое потом сократится, либо при дифференцировании вообще исчезать. На этом урок закончен.

 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!