Замечательные пределы. Примеры решений. Второй замечательный предел

Первым замечательным пределом именуют следующее равенство:

\begin{equation}\lim_{\alpha\to{0}}\frac{\sin\alpha}{\alpha}=1 \end{equation}

Так как при $\alpha\to{0}$ имеем $\sin\alpha\to{0}$, то говорят, что первый замечательный предел раскрывает неопределённость вида $\frac{0}{0}$. Вообще говоря, в формуле (1) вместо переменной $\alpha$ под знаком синуса и в знаменателе может быть расположено любое выражение, - лишь бы выполнялись два условия:

  1. Выражения под знаком синуса и в знаменателе одновременно стремятся к нулю, т.е. присутствует неопределенность вида $\frac{0}{0}$.
  2. Выражения под знаком синуса и в знаменателе совпадают.

Часто используются также следствия из первого замечательного предела:

\begin{equation} \lim_{\alpha\to{0}}\frac{\tg\alpha}{\alpha}=1 \end{equation} \begin{equation} \lim_{\alpha\to{0}}\frac{\arcsin\alpha}{\alpha}=1 \end{equation} \begin{equation} \lim_{\alpha\to{0}}\frac{\arctg\alpha}{\alpha}=1 \end{equation}

На данной странице решены одиннадцать примеров. Пример №1 посвящен доказательству формул (2)-(4). Примеры №2, №3, №4 и №5 содержат решения с подробными комментариями. Примеры №6-10 содержат решения практически без комментариев, ибо подробные пояснения были даны в предыдущих примерах. При решении используются некоторые тригонометрические формулы, которые можно найти .

Замечу, что наличие тригонометрических функций вкупе с неопределённостью $\frac {0} {0}$ ещё не означает обязательное применение первого замечательного предела. Иногда бывает достаточно простых тригонометрических преобразований, - например, см. .

Пример №1

Доказать, что $\lim_{\alpha\to{0}}\frac{\tg\alpha}{\alpha}=1$, $\lim_{\alpha\to{0}}\frac{\arcsin\alpha}{\alpha}=1$, $\lim_{\alpha\to{0}}\frac{\arctg\alpha}{\alpha}=1$.

а) Так как $\tg\alpha=\frac{\sin\alpha}{\cos\alpha}$, то:

$$ \lim_{\alpha\to{0}}\frac{\tg{\alpha}}{\alpha}=\left|\frac{0}{0}\right| =\lim_{\alpha\to{0}}\frac{\sin{\alpha}}{\alpha\cos{\alpha}} $$

Так как $\lim_{\alpha\to{0}}\cos{0}=1$ и $\lim_{\alpha\to{0}}\frac{\sin\alpha}{\alpha}=1$, то:

$$ \lim_{\alpha\to{0}}\frac{\sin{\alpha}}{\alpha\cos{\alpha}} =\frac{\displaystyle\lim_{\alpha\to{0}}\frac{\sin{\alpha}}{\alpha}}{\displaystyle\lim_{\alpha\to{0}}\cos{\alpha}} =\frac{1}{1} =1. $$

б) Сделаем замену $\alpha=\sin{y}$. Поскольку $\sin{0}=0$, то из условия $\alpha\to{0}$ имеем $y\to{0}$. Кроме того, существует окрестность нуля, в которой $\arcsin\alpha=\arcsin(\sin{y})=y$, поэтому:

$$ \lim_{\alpha\to{0}}\frac{\arcsin\alpha}{\alpha}=\left|\frac{0}{0}\right| =\lim_{y\to{0}}\frac{y}{\sin{y}} =\lim_{y\to{0}}\frac{1}{\frac{\sin{y}}{y}} =\frac{1}{\displaystyle\lim_{y\to{0}}\frac{\sin{y}}{y}} =\frac{1}{1} =1. $$

Равенство $\lim_{\alpha\to{0}}\frac{\arcsin\alpha}{\alpha}=1$ доказано.

в) Сделаем замену $\alpha=\tg{y}$. Поскольку $\tg{0}=0$, то условия $\alpha\to{0}$ и $y\to{0}$ эквивалентны. Кроме того, существует окрестность нуля, в которой $\arctg\alpha=\arctg\tg{y})=y$, поэтому, опираясь на результаты пункта а), будем иметь:

$$ \lim_{\alpha\to{0}}\frac{\arctg\alpha}{\alpha}=\left|\frac{0}{0}\right| =\lim_{y\to{0}}\frac{y}{\tg{y}} =\lim_{y\to{0}}\frac{1}{\frac{\tg{y}}{y}} =\frac{1}{\displaystyle\lim_{y\to{0}}\frac{\tg{y}}{y}} =\frac{1}{1} =1. $$

Равенство $\lim_{\alpha\to{0}}\frac{\arctg\alpha}{\alpha}=1$ доказано.

Равенства а), б), в) часто используются наряду с первым замечательным пределом.

Пример №2

Вычислить предел $\lim_{x\to{2}}\frac{\sin\left(\frac{x^2-4}{x+7}\right)}{\frac{x^2-4}{x+7}}$.

Так как $\lim_{x\to{2}}\frac{x^2-4}{x+7}=\frac{2^2-4}{2+7}=0$ и $\lim_{x\to{2}}\sin\left(\frac{x^2-4}{x+7}\right)=\sin{0}=0$, т.е. и числитель и знаменатель дроби одновременно стремятся к нулю, то здесь мы имеем дело с неопределенностью вида $\frac{0}{0}$, т.е. выполнено. Кроме того, видно, что выражения под знаком синуса и в знаменателе совпадают (т.е. выполнено и ):

Итак, оба условия, перечисленные в начале страницы, выполнены. Из этого следует, что применима формула , т.е. $\lim_{x\to{2}} \frac{\sin\left(\frac{x^2-4}{x+7}\right)}{\frac{x^2-4}{x+7}}=1$.

Ответ : $\lim_{x\to{2}}\frac{\sin\left(\frac{x^2-4}{x+7}\right)}{\frac{x^2-4}{x+7}}=1$.

Пример №3

Найти $\lim_{x\to{0}}\frac{\sin{9x}}{x}$.

Так как $\lim_{x\to{0}}\sin{9x}=0$ и $\lim_{x\to{0}}x=0$, то мы имеем дело с неопределенностью вида $\frac{0}{0}$, т.е. выполнено. Однако выражения под знаком синуса и в знаменателе не совпадают. Здесь требуется подогнать выражение в знаменателе под нужную форму. Нам необходимо, чтобы в знаменателе расположилось выражение $9x$, - тогда станет истинным. По сути, нам не хватает множителя $9$ в знаменателе, который не так уж сложно ввести, - просто домножить выражение в знаменателе на $9$. Естественно, что для компенсации домножения на $9$ придётся тут же на $9$ и разделить:

$$ \lim_{x\to{0}}\frac{\sin{9x}}{x}=\left|\frac{0}{0}\right| =\lim_{x\to{0}}\frac{\sin{9x}}{9x\cdot\frac{1}{9}} =9\lim_{x\to{0}}\frac{\sin{9x}}{9x} $$

Теперь выражения в знаменателе и под знаком синуса совпали. Оба условия для предела $\lim_{x\to{0}}\frac{\sin{9x}}{9x}$ выполнены. Следовательно, $\lim_{x\to{0}}\frac{\sin{9x}}{9x}=1$. А это значит, что:

$$ 9\lim_{x\to{0}}\frac{\sin{9x}}{9x}=9\cdot{1}=9. $$

Ответ : $\lim_{x\to{0}}\frac{\sin{9x}}{x}=9$.

Пример №4

Найти $\lim_{x\to{0}}\frac{\sin{5x}}{\tg{8x}}$.

Так как $\lim_{x\to{0}}\sin{5x}=0$ и $\lim_{x\to{0}}\tg{8x}=0$, то здесь мы имеем дело с неопределенностью вида $\frac{0}{0}$. Однако форма первого замечательного предела нарушена. Числитель, содержащий $\sin{5x}$, требует наличия в знаменателе $5x$. В этой ситуации проще всего разделить числитель на $5x$, - и тут же на $5x$ домножить. Кроме того, проделаем аналогичную операцию и со знаменателем, домножив и разделив $\tg{8x}$ на $8x$:

$$\lim_{x\to{0}}\frac{\sin{5x}}{\tg{8x}}=\left|\frac{0}{0}\right| =\lim_{x\to{0}}\frac{\frac{\sin{5x}}{5x}\cdot{5x}}{\frac{\tg{8x}}{8x}\cdot{8x}}$$

Сокращая на $x$ и вынося константу $\frac{5}{8}$ за знак предела, получим:

$$ \lim_{x\to{0}}\frac{\frac{\sin{5x}}{5x}\cdot{5x}}{\frac{\tg{8x}}{8x}\cdot{8x}} =\frac{5}{8}\cdot\lim_{x\to{0}}\frac{\frac{\sin{5x}}{5x}}{\frac{\tg{8x}}{8x}} $$

Обратите внимание, что $\lim_{x\to{0}}\frac{\sin{5x}}{5x}$ полностью удовлетворяет требованиям для первого замечательного предела. Для отыскания $\lim_{x\to{0}}\frac{\tg{8x}}{8x}$ применима формула :

$$ \frac{5}{8}\cdot\lim_{x\to{0}}\frac{\frac{\sin{5x}}{5x}}{\frac{\tg{8x}}{8x}} =\frac{5}{8}\cdot\frac{\displaystyle\lim_{x\to{0}}\frac{\sin{5x}}{5x}}{\displaystyle\lim_{x\to{0}}\frac{\tg{8x}}{8x}} =\frac{5}{8}\cdot\frac{1}{1} =\frac{5}{8}. $$

Ответ : $\lim_{x\to{0}}\frac{\sin{5x}}{\tg{8x}}=\frac{5}{8}$.

Пример №5

Найти $\lim_{x\to{0}}\frac{\cos{5x}-\cos^3{5x}}{x^2}$.

Так как $\lim_{x\to{0}}(\cos{5x}-\cos^3{5x})=1-1=0$ (напомню, что $\cos{0}=1$) и $\lim_{x\to{0}}x^2=0$, то мы имеем дело с неопределённостью вида $\frac{0}{0}$. Однако чтобы применить первый замечательный предел следует избавиться от косинуса в числителе, перейдя к синусам (дабы потом применить формулу ) или тангенсам (чтобы потом применить формулу ). Сделать это можно таким преобразованием:

$$\cos{5x}-\cos^3{5x}=\cos{5x}\cdot\left(1-\cos^2{5x}\right)$$ $$\cos{5x}-\cos^3{5x}=\cos{5x}\cdot\left(1-\cos^2{5x}\right)=\cos{5x}\cdot\sin^2{5x}.$$

Вернемся к пределу:

$$ \lim_{x\to{0}}\frac{\cos{5x}-\cos^3{5x}}{x^2}=\left|\frac{0}{0}\right| =\lim_{x\to{0}}\frac{\cos{5x}\cdot\sin^2{5x}}{x^2} =\lim_{x\to{0}}\left(\cos{5x}\cdot\frac{\sin^2{5x}}{x^2}\right) $$

Дробь $\frac{\sin^2{5x}}{x^2}$ уже близка к той форме, что требуется для первого замечательного предела. Немного поработаем с дробью $\frac{\sin^2{5x}}{x^2}$, подгоняя её под первый замечательный предел (учтите, что выражения в числителе и под синусом должны совпасть):

$$\frac{\sin^2{5x}}{x^2}=\frac{\sin^2{5x}}{25x^2\cdot\frac{1}{25}}=25\cdot\frac{\sin^2{5x}}{25x^2}=25\cdot\left(\frac{\sin{5x}}{5x}\right)^2$$

Вернемся к рассматриваемому пределу:

$$ \lim_{x\to{0}}\left(\cos{5x}\cdot\frac{\sin^2{5x}}{x^2}\right) =\lim_{x\to{0}}\left(25\cos{5x}\cdot\left(\frac{\sin{5x}}{5x}\right)^2\right)=\\ =25\cdot\lim_{x\to{0}}\cos{5x}\cdot\lim_{x\to{0}}\left(\frac{\sin{5x}}{5x}\right)^2 =25\cdot{1}\cdot{1^2} =25. $$

Ответ : $\lim_{x\to{0}}\frac{\cos{5x}-\cos^3{5x}}{x^2}=25$.

Пример №6

Найти предел $\lim_{x\to{0}}\frac{1-\cos{6x}}{1-\cos{2x}}$.

Так как $\lim_{x\to{0}}(1-\cos{6x})=0$ и $\lim_{x\to{0}}(1-\cos{2x})=0$, то мы имеем дело с неопределенностью $\frac{0}{0}$. Раскроем ее с помощью первого замечательного предела. Для этого перейдем от косинусов к синусам. Так как $1-\cos{2\alpha}=2\sin^2{\alpha}$, то:

$$1-\cos{6x}=2\sin^2{3x};\;1-\cos{2x}=2\sin^2{x}.$$

Переходя в заданном пределе к синусам, будем иметь:

$$ \lim_{x\to{0}}\frac{1-\cos{6x}}{1-\cos{2x}}=\left|\frac{0}{0}\right| =\lim_{x\to{0}}\frac{2\sin^2{3x}}{2\sin^2{x}} =\lim_{x\to{0}}\frac{\sin^2{3x}}{\sin^2{x}}=\\ =\lim_{x\to{0}}\frac{\frac{\sin^2{3x}}{(3x)^2}\cdot(3x)^2}{\frac{\sin^2{x}}{x^2}\cdot{x^2}} =\lim_{x\to{0}}\frac{\left(\frac{\sin{3x}}{3x}\right)^2\cdot{9x^2}}{\left(\frac{\sin{x}}{x}\right)^2\cdot{x^2}} =9\cdot\frac{\displaystyle\lim_{x\to{0}}\left(\frac{\sin{3x}}{3x}\right)^2}{\displaystyle\lim_{x\to{0}}\left(\frac{\sin{x}}{x}\right)^2} =9\cdot\frac{1^2}{1^2} =9. $$

Ответ : $\lim_{x\to{0}}\frac{1-\cos{6x}}{1-\cos{2x}}=9$.

Пример №7

Вычислить предел $\lim_{x\to{0}}\frac{\cos(\alpha{x})-\cos(\beta{x})}{x^2}$ при условии $\alpha\neq\beta$.

Подробные пояснения были даны ранее, здесь же просто отметим, что вновь наличествует неопределенность $\frac{0}{0}$. Перейдем от косинусов к синусам, используя формулу

$$\cos\alpha-\cos\beta=-2\sin\frac{\alpha+\beta}{2}\cdot\sin\frac{\alpha-\beta}{2}.$$

Используя указанную формулу, получим:

$$ \lim_{x\to{0}}\frac{\cos(\alpha{x})-\cos(\beta{x})}{x^2}=\left|\frac{0}{0}\right| =\lim_{x\to{0}}\frac{-2\sin\frac{\alpha{x}+\beta{x}}{2}\cdot\sin\frac{\alpha{x}-\beta{x}}{2}}{x^2}=\\ =-2\cdot\lim_{x\to{0}}\frac{\sin\left(x\cdot\frac{\alpha+\beta}{2}\right)\cdot\sin\left(x\cdot\frac{\alpha-\beta}{2}\right)}{x^2} =-2\cdot\lim_{x\to{0}}\left(\frac{\sin\left(x\cdot\frac{\alpha+\beta}{2}\right)}{x}\cdot\frac{\sin\left(x\cdot\frac{\alpha-\beta}{2}\right)}{x}\right)=\\ =-2\cdot\lim_{x\to{0}}\left(\frac{\sin\left(x\cdot\frac{\alpha+\beta}{2}\right)}{x\cdot\frac{\alpha+\beta}{2}}\cdot\frac{\alpha+\beta}{2}\cdot\frac{\sin\left(x\cdot\frac{\alpha-\beta}{2}\right)}{x\cdot\frac{\alpha-\beta}{2}}\cdot\frac{\alpha-\beta}{2}\right)=\\ =-\frac{(\alpha+\beta)\cdot(\alpha-\beta)}{2}\lim_{x\to{0}}\frac{\sin\left(x\cdot\frac{\alpha+\beta}{2}\right)}{x\cdot\frac{\alpha+\beta}{2}}\cdot\lim_{x\to{0}}\frac{\sin\left(x\cdot\frac{\alpha-\beta}{2}\right)}{x\cdot\frac{\alpha-\beta}{2}} =-\frac{\alpha^2-\beta^2}{2}\cdot{1}\cdot{1} =\frac{\beta^2-\alpha^2}{2}. $$

Ответ : $\lim_{x\to{0}}\frac{\cos(\alpha{x})-\cos(\beta{x})}{x^2}=\frac{\beta^2-\alpha^2}{2}$.

Пример №8

Найти предел $\lim_{x\to{0}}\frac{\tg{x}-\sin{x}}{x^3}$.

Так как $\lim_{x\to{0}}(\tg{x}-\sin{x})=0$ (напомню, что $\sin{0}=\tg{0}=0$) и $\lim_{x\to{0}}x^3=0$, то здесь мы имеем дело с неопределенностью вида $\frac{0}{0}$. Раскроем её следующим образом:

$$ \lim_{x\to{0}}\frac{\tg{x}-\sin{x}}{x^3}=\left|\frac{0}{0}\right| =\lim_{x\to{0}}\frac{\frac{\sin{x}}{\cos{x}}-\sin{x}}{x^3} =\lim_{x\to{0}}\frac{\sin{x}\cdot\left(\frac{1}{\cos{x}}-1\right)}{x^3} =\lim_{x\to{0}}\frac{\sin{x}\cdot\left(1-\cos{x}\right)}{x^3\cdot\cos{x}}=\\ =\lim_{x\to{0}}\frac{\sin{x}\cdot{2}\sin^2\frac{x}{2}}{x^3\cdot\cos{x}} =\frac{1}{2}\cdot\lim_{x\to{0}}\left(\frac{\sin{x}}{x}\cdot\left(\frac{\sin\frac{x}{2}}{\frac{x}{2}}\right)^2\cdot\frac{1}{\cos{x}}\right) =\frac{1}{2}\cdot{1}\cdot{1^2}\cdot{1} =\frac{1}{2}. $$

Ответ : $\lim_{x\to{0}}\frac{\tg{x}-\sin{x}}{x^3}=\frac{1}{2}$.

Пример №9

Найти предел $\lim_{x\to{3}}\frac{1-\cos(x-3)}{(x-3)\tg\frac{x-3}{2}}$.

Так как $\lim_{x\to{3}}(1-\cos(x-3))=0$ и $\lim_{x\to{3}}(x-3)\tg\frac{x-3}{2}=0$, то наличествует неопределенность вида $\frac{0}{0}$. Перед тем, как переходить к её раскрытию, удобно сделать замену переменной таким образом, чтобы новая переменная устремилась к нулю (обратите внимание, что в формулах переменная $\alpha \to 0$). Проще всего ввести переменную $t=x-3$. Однако ради удобства дальнейших преобразований (эту выгоду можно заметить по ходу приведённого ниже решения) стоит сделать такую замену: $t=\frac{x-3}{2}$. Отмечу, что обе замены применимы в данном случае, просто вторая замена позволит поменьше работать с дробями. Так как $x\to{3}$, то $t\to{0}$.

$$ \lim_{x\to{3}}\frac{1-\cos(x-3)}{(x-3)\tg\frac{x-3}{2}}=\left|\frac{0}{0}\right| =\left|\begin{aligned}&t=\frac{x-3}{2};\\&t\to{0}\end{aligned}\right| =\lim_{t\to{0}}\frac{1-\cos{2t}}{2t\cdot\tg{t}} =\lim_{t\to{0}}\frac{2\sin^2t}{2t\cdot\tg{t}} =\lim_{t\to{0}}\frac{\sin^2t}{t\cdot\tg{t}}=\\ =\lim_{t\to{0}}\frac{\sin^2t}{t\cdot\frac{\sin{t}}{\cos{t}}} =\lim_{t\to{0}}\frac{\sin{t}\cos{t}}{t} =\lim_{t\to{0}}\left(\frac{\sin{t}}{t}\cdot\cos{t}\right) =\lim_{t\to{0}}\frac{\sin{t}}{t}\cdot\lim_{t\to{0}}\cos{t} =1\cdot{1} =1. $$

Ответ : $\lim_{x\to{3}}\frac{1-\cos(x-3)}{(x-3)\tg\frac{x-3}{2}}=1$.

Пример №10

Найти предел $\lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{\left(\frac{\pi}{2}-x\right)^2}$.

Вновь мы имеем дело с неопределенностью $\frac{0}{0}$. Перед тем, как переходить к ее раскрытию, удобно сделать замену переменной таким образом, чтобы новая переменная устремилась к нулю (обратите внимание, что в формулах переменная $\alpha\to{0}$). Проще всего ввести переменную $t=\frac{\pi}{2}-x$. Так как $x\to\frac{\pi}{2}$, то $t\to{0}$:

$$ \lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{\left(\frac{\pi}{2}-x\right)^2} =\left|\frac{0}{0}\right| =\left|\begin{aligned}&t=\frac{\pi}{2}-x;\\&t\to{0}\end{aligned}\right| =\lim_{t\to{0}}\frac{1-\sin\left(\frac{\pi}{2}-t\right)}{t^2} =\lim_{t\to{0}}\frac{1-\cos{t}}{t^2}=\\ =\lim_{t\to{0}}\frac{2\sin^2\frac{t}{2}}{t^2} =2\lim_{t\to{0}}\frac{\sin^2\frac{t}{2}}{t^2} =2\lim_{t\to{0}}\frac{\sin^2\frac{t}{2}}{\frac{t^2}{4}\cdot{4}} =\frac{1}{2}\cdot\lim_{t\to{0}}\left(\frac{\sin\frac{t}{2}}{\frac{t}{2}}\right)^2 =\frac{1}{2}\cdot{1^2} =\frac{1}{2}. $$

Ответ : $\lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{\left(\frac{\pi}{2}-x\right)^2}=\frac{1}{2}$.

Пример №11

Найти пределы $\lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{\cos^2x}$, $\lim_{x\to\frac{2\pi}{3}}\frac{\tg{x}+\sqrt{3}}{2\cos{x}+1}$.

В данном случае нам не придётся использовать первый замечательный предел. Обратите внимание: как в первом, так и во втором пределах присутствуют только тригонометрические функции и числа. Зачастую в примерах такого рода удаётся упростить выражение, расположенное под знаком предела. При этом после упомянутого упрощения и сокращения некоторых сомножителей неопределённость исчезает. Я привёл данный пример лишь с одной целью: показать, что наличие тригонометрических функций под знаком предела вовсе не обязательно означает применение первого замечательного предела.

Так как $\lim_{x\to\frac{\pi}{2}}(1-\sin{x})=0$ (напомню, что $\sin\frac{\pi}{2}=1$) и $\lim_{x\to\frac{\pi}{2}}\cos^2x=0$ (напомню, что $\cos\frac{\pi}{2}=0$), то мы имеем дело с неопределенностью вида $\frac{0}{0}$. Однако это вовсе не означает, что нам потребуется использовать первый замечательный предел. Для раскрытия неопределенности достаточно учесть, что $\cos^2x=1-\sin^2x$:

$$ \lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{\cos^2x} =\left|\frac{0}{0}\right| =\lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{1-\sin^2x} =\lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{(1-\sin{x})(1+\sin{x})} =\lim_{x\to\frac{\pi}{2}}\frac{1}{1+\sin{x}} =\frac{1}{1+1} =\frac{1}{2}. $$

Аналогичный способ решения есть и в решебнике Демидовича (№475) . Что же касается второго предела, то как и в предыдущих примерах этого раздела, мы имеем неопределённость вида $\frac{0}{0}$. Отчего она возникает? Она возникает потому, что $\tg\frac{2\pi}{3}=-\sqrt{3}$ и $2\cos\frac{2\pi}{3}=-1$. Используем эти значения с целью преобразования выражений в числителе и в знаменателе. Цель наших действий: записать сумму в числителе и знаменателе в виде произведения. Кстати сказать, зачастую в пределах аналогичного вида удобна замена переменной, сделанная с таким расчётом, чтобы новая переменная устремилась к нулю (см., например, примеры №9 или №10 на этой странице). Однако в данном примере в замене смысла нет, хотя при желании замену переменной $t=x-\frac{2\pi}{3}$ несложно осуществить.

$$ \lim_{x\to\frac{2\pi}{3}}\frac{\tg{x}+\sqrt{3}}{2\cos{x}+1} =\lim_{x\to\frac{2\pi}{3}}\frac{\tg{x}+\sqrt{3}}{2\cdot\left(\cos{x}+\frac{1}{2}\right)} =\lim_{x\to\frac{2\pi}{3}}\frac{\tg{x}-\tg\frac{2\pi}{3}}{2\cdot\left(\cos{x}-\cos\frac{2\pi}{3}\right)}=\\ =\lim_{x\to\frac{2\pi}{3}}\frac{\frac{\sin\left(x-\frac{2\pi}{3}\right)}{\cos{x}\cos\frac{2\pi}{3}}}{-4\sin\frac{x+\frac{2\pi}{3}}{2}\sin\frac{x-\frac{2\pi}{3}}{2}} =\lim_{x\to\frac{2\pi}{3}}\frac{\sin\left(x-\frac{2\pi}{3}\right)}{-4\sin\frac{x+\frac{2\pi}{3}}{2}\sin\frac{x-\frac{2\pi}{3}}{2}\cos{x}\cos\frac{2\pi}{3}}=\\ =\lim_{x\to\frac{2\pi}{3}}\frac{2\sin\frac{x-\frac{2\pi}{3}}{2}\cos\frac{x-\frac{2\pi}{3}}{2}}{-4\sin\frac{x+\frac{2\pi}{3}}{2}\sin\frac{x-\frac{2\pi}{3}}{2}\cos{x}\cos\frac{2\pi}{3}} =\lim_{x\to\frac{2\pi}{3}}\frac{\cos\frac{x-\frac{2\pi}{3}}{2}}{-2\sin\frac{x+\frac{2\pi}{3}}{2}\cos{x}\cos\frac{2\pi}{3}}=\\ =\frac{1}{-2\cdot\frac{\sqrt{3}}{2}\cdot\left(-\frac{1}{2}\right)\cdot\left(-\frac{1}{2}\right)} =-\frac{4}{\sqrt{3}}. $$

Как видите, нам не пришлось применять первый замечательный предел. Конечно, при желании это можно сделать (см. примечание ниже), но необходимости в этом нет.

Каким будет решение с использованием первого замечательного предела? показать\скрыть

При использовании первого замечательного предела получим:

$$ \lim_{x\to\frac{2\pi}{3}}\frac{\sin\left(x-\frac{2\pi}{3}\right)}{-4\sin\frac{x+\frac{2\pi}{3}}{2}\sin\frac{x-\frac{2\pi}{3}}{2}\cos{x}\cos\frac{2\pi}{3}}=\\ =\lim_{x\to\frac{2\pi}{3}}\left(\frac{\sin\left(x-\frac{2\pi}{3}\right)}{x-\frac{2\pi}{3}}\cdot\frac{1}{\frac{\sin\frac{x-\frac{2\pi}{3}}{2}}{\frac{x-\frac{2\pi}{3}}{2}}}\cdot\frac{1}{-2\sin\frac{x+\frac{2\pi}{3}}{2}\cos{x}\cos\frac{2\pi}{3}}\right) =1\cdot{1}\cdot\frac{1}{-2\cdot\frac{\sqrt{3}}{2}\cdot\left(-\frac{1}{2}\right)\cdot\left(-\frac{1}{2}\right)} =-\frac{4}{\sqrt{3}}. $$

Ответ : $\lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{\cos^2x}=\frac{1}{2}$, $\lim_{x\to\frac{2\pi}{3}}\frac{\tg{x}+\sqrt{3}}{2\cos{x}+1}=-\frac{4}{\sqrt{3}}$.

Термин "замечательный предел" широко используется в учебниках и методических пособиях для обозначения важных тождеств, которые помогают существенно упростить работу по нахождению пределов.

Но чтобы суметь привести свой предел к замечательному, нужно к нему хорошенько приглядеться, ведь они встречаются не в прямом виде, а часто в виде следствий, снабженные дополнительными слагаемыми и множителями. Впрочем, сначала теория, потом примеры, и все у вас получится!

Первый замечательный предел

Понравилось? Добавьте в закладки

Первый замечательный предел записывается так (неопределенность вида $0/0$):

$$ \lim\limits_{x\to 0}\frac{\sin x}{x}=1. $$

Следствия из первого замечательного предела

$$ \lim\limits_{x\to 0}\frac{x}{\sin x}=1. $$ $$ \lim\limits_{x\to 0}\frac{\sin (ax)}{\sin (bx)}=\frac{a}{b}. $$ $$ \lim\limits_{x\to 0}\frac{\tan x}{x}=1. $$ $$ \lim\limits_{x\to 0}\frac{\arcsin x}{x}=1. $$ $$ \lim\limits_{x\to 0}\frac{\arctan x}{x}=1. $$ $$ \lim\limits_{x\to 0}\frac{1-\cos x}{x^2/2}=1. $$

Примеры решений: 1 замечательный предел

Пример 1. Вычислить предел $$\lim\limits_{x\to 0}\frac{\sin 3x}{8x}.$$

Решение. Первый шаг всегда одинаковый - подставляем предельное значение $x=0$ в функцию и получаем:

$$\left[ \frac{\sin 0}{0} \right] = \left[\frac{0}{0}\right].$$

Получили неопределенность вида $\left[\frac{0}{0}\right]$, которую следует раскрыть. Если посмотреть внимательно, исходный предел очень похож на первый замечательный, но не совпадает с ним. Наша задача - довести до похожести. Преобразуем так - смотрим на выражение под синусом, делаем такое же в знаменателе (условно говоря, умножили и поделили на $3x$), дальше сокращаем и упрощаем:

$$ \lim\limits_{x\to 0}\frac{\sin 3x}{8x} = \lim\limits_{x\to 0}\frac{\sin 3x}{3x}\frac{3x}{8x}=\lim\limits_{x\to 0}\frac{\sin (3x)}{3x}\frac{3}{8}=\frac{3}{8}. $$

Выше как раз и получился первый замечательный предел: $$ \lim\limits_{x\to 0}\frac{\sin (3x)}{3x} = \lim\limits_{y\to 0}\frac{\sin (y)}{y}=1, \text{ сделали условную замену } y=3x. $$ Ответ: $3/8$.

Пример 2. Вычислить предел $$\lim\limits_{x\to 0}\frac{1-\cos 3x}{\tan 2x\cdot \sin 4x}.$$

Решение. Подставляем предельное значение $x=0$ в функцию и получаем:

$$\left[ \frac{1-\cos 0}{\tan 0\cdot \sin 0}\right] =\left[ \frac{1-1}{ 0\cdot 0}\right] = \left[\frac{0}{0}\right].$$

Получили неопределенность вида $\left[\frac{0}{0}\right]$. Преобразуем предел, используя в упрощении первый замечательный предел (три раза!):

$$\lim\limits_{x\to 0}\frac{1-\cos 3x}{\tan 2x\cdot \sin 4x} = \lim\limits_{x\to 0}\frac{ 2 \sin^2 (3x/2)}{\sin 2x\cdot \sin 4x}\cdot \cos 2x = $$ $$ = 2\lim\limits_{x\to 0}\frac{ \sin^2 (3x/2)}{(3x/2)^2} \cdot \frac{ 2x}{\sin 2x} \cdot \frac{ 4x}{ \sin 4x}\cdot \frac{ (3x/2)^2}{ 2x \cdot 4x} \cdot \cos 2x = $$ $$ =2\lim\limits_{x\to 0} 1 \cdot 1 \cdot 1 \cdot \frac{ (9/4)x^2}{ 8x^2} \cdot \cos 2x= 2 \cdot \frac{ 9}{ 32} \lim\limits_{x\to 0} \cos 2x=\frac{9}{16}. $$

Ответ: $9/16$.

Пример 3. Найти предел $$\lim\limits_{x\to 0}\frac{\sin (2x^3+3x)}{5x-x^5}.$$

Решение. А что если под тригонометрической функцией сложное выражение? Не беда, и тут действуем аналогично. Сначала проверим тип неопределенности, подставляем $x=0$ в функцию и получаем:

$$\left[ \frac{\sin (0+0)}{0-0}\right] = \left[\frac{0}{0}\right].$$

Получили неопределенность вида $\left[\frac{0}{0}\right]$. Умножим и поделим на $2x^3+3x$:

$$ \lim\limits_{x\to 0}\frac{\sin (2x^3+3x)}{5x-x^5}=\lim\limits_{x\to 0}\frac{\sin (2x^3+3x)}{(2x^3+3x)} \cdot \frac{2x^3+3x}{5x-x^5}=\lim\limits_{x\to 0} 1 \cdot \frac{2x^3+3x}{5x-x^5}= \left[\frac{0}{0}\right] = $$

Снова получили неопределенность, но в этом случае это просто дробь. Сократим на $x$ числитель и знаменатель:

$$ =\lim\limits_{x\to 0} \frac{2x^2+3}{5-x^4}= \left[\frac{0+3}{5-0}\right] =\frac{3}{5}. $$

Ответ: $3/5$.

Второй замечательный предел

Второй замечательный предел записывается так (неопределенность вида $1^\infty$):

$$ \lim\limits_{x\to \infty} \left(1+\frac{1}{x}\right)^{x}=e, \quad \text{или} \quad \lim\limits_{x\to 0} \left(1+x\right)^{1/x}=e. $$

Следствия второго замечательного предела

$$ \lim\limits_{x\to \infty} \left(1+\frac{a}{x}\right)^{bx}=e^{ab}. $$ $$ \lim\limits_{x\to 0}\frac{\ln (1+x)}{x}=1. $$ $$ \lim\limits_{x\to 0}\frac{e^x -1}{x}=1. $$ $$ \lim\limits_{x\to 0}\frac{a^x-1}{x \ln a}=1, a>0, a \ne 1. $$ $$ \lim\limits_{x\to 0}\frac{(1+x)^{a}-1}{ax}=1. $$

Примеры решений: 2 замечательный предел

Пример 4. Найти предел $$\lim\limits_{x\to \infty}\left(1-\frac{2}{3x}\right)^{x+3}.$$

Решение. Проверим тип неопределенности, подставляем $x=\infty$ в функцию и получаем:

$$\left[ \left(1-\frac{2}{\infty}\right)^{\infty} \right] = \left.$$

Получили неопределенность вида $\left$. Предел можно свести к второму замечательному. Преобразуем:

$$ \lim\limits_{x\to \infty}\left(1-\frac{2}{3x}\right)^{x+3} = \lim\limits_{x\to \infty}\left(1+\frac{1}{(-3x/2)}\right)^{\frac{-3x/2}{-3x/2}(x+3)}= $$ $$ = \lim\limits_{x\to \infty}\left(\left(1+\frac{1}{(-3x/2)}\right)^{(-3x/2)}\right)^\frac{x+3}{-3x/2}= $$

Выражение в скобках фактически и есть второй замечательный предел $\lim\limits_{t\to \infty} \left(1+\frac{1}{t}\right)^{t}=e$, только $t=-3x/2$, поэтому

$$ = \lim\limits_{x\to \infty}\left(e\right)^\frac{x+3}{-3x/2}= \lim\limits_{x\to \infty}e^\frac{1+3/x}{-3/2}=e^{-2/3}. $$

Ответ: $e^{-2/3}$.

Пример 5. Найти предел $$\lim\limits_{x\to \infty}\left(\frac{x^3+2x^2+1}{x^3+x-7}\right)^{x}.$$

Решение. Подставляем $x=\infty$ в функцию и получаем неопределенность вида $\left[ \frac{\infty}{\infty}\right]$. А нам нужно $\left$. Поэтому начнем с преобразования выражения в скобках:

$$ \lim\limits_{x\to \infty}\left(\frac{x^3+2x^2+1}{x^3+x-7}\right)^{x} = \lim\limits_{x\to \infty}\left(\frac{x^3+(x-7)-(x-7)+2x^2+1}{x^3+x-7}\right)^{x} = \lim\limits_{x\to \infty}\left(\frac{(x^3+x-7)+(-x+7+2x^2+1)}{x^3+x-7}\right)^{x} = $$ $$ = \lim\limits_{x\to \infty}\left(1+\frac{2x^2-x+8}{x^3+x-7}\right)^{x} = \lim\limits_{x\to \infty}\left(\left(1+\frac{2x^2-x+8}{x^3+x-7}\right)^{\frac{x^3+x-7}{2x^2-x+8}}\right)^{x \frac{2x^2-x+8}{x^3+x-7}}= $$

Выражение в скобках фактически и есть второй замечательный предел $\lim\limits_{t\to \infty} \left(1+\frac{1}{t}\right)^{t}=e$, только $t=\frac{x^3+x-7}{2x^2-x+8} \to \infty$, поэтому

$$ = \lim\limits_{x\to \infty}\left(e\right)^{x \frac{2x^2-x+8}{x^3+x-7}}= \lim\limits_{x\to \infty}e^{ \frac{2x^2-x+8}{x^2+1-7/x}}= \lim\limits_{x\to \infty}e^{ \frac{2-1/x+8/x^2}{1+1/x^2-7/x^3}}=e^{2}. $$

Замечательных пределов существует несколько, но самыми известными являются первый и второй замечательные пределы. Замечательность этих пределов состоит в том, что они имеют широкое применение и с их помощью можно найти и другие пределы, встречающиеся в многочисленных задачах. Этим мы и будем заниматься в практической части данного урока. Для решения задач путём приведения к первому или второму замечательному пределу не нужно раскрывать содержащиеся в них неопределённости, поскольку значения этих пределов уже давно вывели великие математики.

Первым замечательным пределом называется предел отношения синуса бесконечно малой дуги к той же дуге, выраженной в радианной мере:

Переходим к решению задач на первый замечательный предел. Заметим: если под знаком предела находится тригонометрическая функция, это почти верный признак того, что это выражение можно привести к первому замечательнному пределу.

Пример 1. Найти предел .

Решение. Подстановка вместо x нуля приводит к неопределённости:

.

В знаменателе - синус, следовательно, выражение можно привести к первому замечательному пределу. Начинаем преобразования:

.

В знаменателе - синус трёх икс, а в числителе всего лишь один икс, значит, нужно получить три икс и в числителе. Для чего? Чтобы представить 3x = a и получить выражение .

И приходим к разновидности первого замечательного предела:

потому что неважно, какая буква (переменная) в этой формуле стоит вместо икса.

Умножаем икс на три и тут же делим:

.

В соответствии с замеченным первым замечательным пределом производим замену дробного выражения:

Теперь можем окончательно решить данный предел:

.

Пример 2. Найти предел .

Решение. Непосредственная подстановка вновь приводит к неопределённости "нуль делить на нуль":

.

Чтобы получить первый замечательный предел, нужно, чтобы икс под знаком синуса в числителе и просто икс в знаменателе были с одним и тем же коэффициентом. Пусть этот коэффициент будет равен 2. Для этого представим нынешний коэффициент при иксе как и далее, производя действия с дробями, получаем:

.

Пример 3. Найти предел .

Решение. При подстановке вновь получаем неопределённость "нуль делить на нуль":

.

Наверное, вам уже понятно, что из исходного выражения можно получить первый замечательный предел, умноженный на первый замечательный предел. Для этого раскладываем квадраты икса в числителе и синуса в знаменателе на одинаковые множители, а чтобы получить у иксов и у синуса одинаковые коэффициенты, иксы в числителе делим на 3 и тут же умножаем на 3. Получаем:

.

Пример 4. Найти предел .

Решение. Вновь получаем неопределённость "нуль делить на нуль":

.

Можем получить отношение двух первых замечательных пределов. Делим и числитель, и знаменатель на икс. Затем, чтобы коэффициенты при синусах и при иксах совпадали, верхний икс умножаем на 2 и тут же делим на 2, а нижний икс умножаем на 3 и тут же делим на 3. Получаем:

Пример 5. Найти предел .

Решение. И вновь неопределённость "нуль делить на нуль":

Помним из тригонометрии, что тангенс - это отношение синуса к косинусу, а косинус нуля равен единице. Производим преобразования и получаем:

.

Пример 6. Найти предел .

Решение. Тригонометрическая функция под знаком предела вновь наталкивает на мысль о применении первого замечательного предела. Представляем его как отношение синуса к косинусу.

Доказательство:

Докажем вначале теорему для случая последовательности

По формуле бинома Ньютона:

Полагая получим

Из данного равенства (1) следует, что с увеличением n число положительных слагаемых в правой части увеличивается. Кроме того, при увеличении n число убывает, поэтому величины возрастают. Поэтому последовательность возрастающая, при этом (2)*Покажем, что она ограничена. Заменим каждую скобку в правой части равенства на единицу, правая часть увеличится, получим неравенство

Усилим полученное неравенство, заменим 3,4,5, …, стоящие в знаменателях дробей, числом 2: Сумму в скобке найдём по формуле суммы членов геометрической прогрессии: Поэтому (3)*

Итак, последовательность ограничена сверху, при этом выполняются неравенства (2) и (3): Следовательно, на основании теоремы Вейерштрасса (критерий сходимости последовательности) последовательность монотонно возрастает и ограниченна, значит имеет предел, обозначаемый буквой e. Т.е.

Зная, что второй замечательный предел верен для натуральных значений x, докажем второй замечательный предел для вещественных x, то есть докажем, что . Рассмотрим два случая:

1. Пусть Каждое значение x заключено между двумя положительными целыми числами: ,где - это целая часть x. => =>

Если ,то Поэтому, согласно пределу Имеем

По признаку (о пределе промежуточной функции) существования пределов

2. Пусть . Сделаем подстановку − x = t, тогда

Из двух этих случаев вытекает, что для вещественного x.

Следствия:

9 .) Сравнение бесконечно малых. Теорема о замене бесконечно малых на эквивалентные в пределе и теорема о главной части бесконечно малых.

Пусть функции a(x ) и b(x ) – б.м. при x ® x 0 .

ОПРЕДЕЛЕНИЯ.

1) a(x ) называется бесконечно малой более высокого порядка чем b(x ) если

Записывают: a(x ) = o(b(x )) .

2) a(x ) и b(x ) называются бесконечно малыми одного порядка , если

где С Îℝ и C ¹ 0 .

Записывают: a(x ) = O (b(x )) .

3) a(x ) и b(x ) называются эквивалентными , если

Записывают: a(x ) ~ b(x ).

4) a(x ) называется бесконечно малой порядка k относи-
тельно бесконечно малой
b(x ),
если бесконечно малые a(x ) и (b(x )) k имеют один порядок, т.е. если

где С Îℝ и C ¹ 0 .

ТЕОРЕМА 6 (о замене бесконечно малых на эквивалентные).

Пусть a(x ), b(x ), a 1 (x ), b 1 (x ) – б.м. при x ® x 0 . Если a(x ) ~ a 1 (x ), b(x ) ~ b 1 (x ),

то

Доказательство: Пусть a(x ) ~ a 1 (x ), b(x ) ~ b 1 (x ), тогда

ТЕОРЕМА 7 (о главной части бесконечно малой).

Пусть a(x ) и b(x ) – б.м. при x ® x 0 , причем b(x ) – б.м. более высокого порядка чем a(x ).

= , a так как b(x )– более высокого порядка чем a(x ) ,то , т.е. из ясно, что a(x ) + b(x ) ~ a(x )

10) Непрерывность функции в точке(на языке пределов эпсилон-дельта,геометрическое) Односторонняя непрерывность. Непрерывность на интервале, на отрезке. Свойства непрерывных функций.

1. Основные определения

Пусть f (x ) определена в некоторой окрестности точки x 0 .

ОПРЕДЕЛЕНИЕ 1. Функция f (x ) называется непрерывной в точке x 0 если справедливо равенство

Замечания .

1) В силу теоремы 5 §3 равенство (1) можно записать в виде

Условие (2) – определение непрерывности функции в точке на языке односторонних пределов .

2) Равенство (1) можно также записать в виде:

Говорят: «если функция непрерывна в точке x 0 , то знак предела и функцию можно поменять местами».

ОПРЕДЕЛЕНИЕ 2 (на языке e-d).

Функция f (x ) называется непрерывной в точке x 0 если "e>0 $d>0 такое , что

если x ÎU(x 0 , d) (т.е. | x x 0 | < d),

то f (x )ÎU(f (x 0), e) (т.е. | f (x ) – f (x 0) | < e).

Пусть x , x 0 Î D (f ) (x 0 – фиксированная, x – произвольная)

Обозначим: Dx = x – x 0 – приращение аргумента

Df (x 0) = f (x ) – f (x 0) – приращение функции в точкеx 0

ОПРЕДЕЛЕНИЕ 3 (геометрическое).

Функция f (x ) называетсянепрерывной в точке x 0 если в этой точке бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции , т.е.

Пусть функция f (x ) определена на промежутке [x 0 ; x 0 + d) (на промежутке (x 0 – d; x 0 ]).

ОПРЕДЕЛЕНИЕ. Функция f (x ) называется непрерывной в точке x 0 справа (слева ), если справедливо равенство

Очевидно, что f (x ) непрерывна в точке x 0 Û f (x ) непрерывна в точке x 0 справа и слева.

ОПРЕДЕЛЕНИЕ. Функция f (x ) называется непрерывной на интервал е (a ; b ) если она непрерывна в каждой точке этого интервала .

Функция f (x ) называется непрерывной на отрезке [a ; b ] если она непрерывна на интервале (a ; b ) и имеет одностороннюю непрерывность в граничных точках (т.е. непрерывна в точке a справа, в точке b – слева).

11) Точки разрыва, их классификация

ОПРЕДЕЛЕНИЕ. Если функция f (x ) определена в некоторой окрестности точки x 0 , но не является непрерывной в этой точке, то f (x ) называют разрывной в точке x 0 , а саму точку x 0 называют точкой разрыва функции f (x ) .

Замечания .

1) f (x ) может быть определена в неполной окрестности точки x 0 .

Тогда рассматривают соответствующую одностороннюю непрерывность функции.

2) Из определения Þ точка x 0 является точкой разрыва функции f (x ) в двух случаях:

а) U(x 0 , d)ÎD (f ) , но для f (x ) не выполняется равенство

б) U * (x 0 , d)ÎD (f ) .

Для элементарных функций возможен только случай б).

Пусть x 0 – точка разрыва функции f (x ) .

ОПРЕДЕЛЕНИЕ. Точка x 0 называется точкой разрыва I рода если функция f (x ) имеет в этой точке конечные пределы слева и справа .

Если при этом эти пределы равны, то точка x 0 называется точкой устранимого разрыва , в противном случае – точкой скачка .

ОПРЕДЕЛЕНИЕ. Точка x 0 называется точкой разрыва II рода если хотя бы один из односторонних пределов функции f (x ) в этой точке равен ¥ или не существует .

12) Свойства функций, непрерывных на отрезке (теоремы Вейерштрасса(без док-ва) и Коши

Теорема Вейерштрасса

Пусть функция f(x) непрерывна на отрезке , тогда

1)f(x)ограничена на

2)f(x) принимает на промежутке своё наименьшее и наибольшее значение

Определение : Значение функции m=fзовется наименьшим, если m≤f(x) для любого x€ D(f).

Значение функции m=fзовется наибольшим, если m≥f(x) для любого x€ D(f).

Наименьшее\наибольшее значение функция может принимать в нескольких точках отрезка.

f(x 3)=f(x 4)=max

Теорема Коши.

Пусть функция f(x) непрерывна на отрезке и х – число, заключенное между f(a) и f(b),тогда существует хотя бы одна точка х 0 € такая, что f(x 0)= g

Теперь со спокойной душой переходим к рассмотрению замечательных пределов .
имеет вид .

Вместо переменной х могут присутствовать различные функции, главное, чтобы они стремились к 0.

Необходимо вычислить предел

Как видно, данный предел очень похож на первый замечательный, но это не совсем так. Вообще, если Вы замечаете в пределе sin, то надо сразу задуматься о том, возможно ли применение первого замечательного предела.

Согласно нашему правилу №1 подставим вместо х ноль:

Получаем неопределенность .

Теперь попробуем самостоятельно организовать первый замечательный предел. Для этого проведем нехитрую комбинацию:

Таким образом мы организовываем числитель и знаменатель так, чтобы выделить 7х. Вот уже и проявился знакомый замечательный предел. Желательно при решении выделять его:

Подставим решение первого замечательного примера и получаем:

Упрощаем дробь:

Ответ: 7/3.

Как видите – все очень просто.

Имеет вид , где e = 2,718281828… – это иррациональное число.

Вместо переменной х могут присутствовать различные функции, главное, чтобы они стремились к .

Необходимо вычислить предел

Здесь мы видим наличие степени под знаком предела, значит возможно применение второго замечательного предела.

Как всегда воспользуемся правилом №1 – подставим вместо х:

Видно, что при х основание степени , а показатель – 4x > , т.е. получаем неопределенность вида :

Воспользуемся вторым замечательным пределом для раскрытия нашей неопределенности, но сначала надо его организовать. Как видно – надо добиться присутствия в показателе, для чего возведем основание в степень 3х, и одновременно в степень 1/3x, чтобы выражение не менялось:

Не забываем выделять наш замечательный предел:

Вот такие действительно замечательные пределы !
Если у вас остались какие то вопросы по первому и второму замечательным пределам , то смело задавайте их в комментариях.
Всем по возможности ответим.

Также вы можете позаниматься с педагогом по этой теме.
Мы рады предложить вам услуги подбора квалифицированного репетитора в вашем городе. Наши партнеры оперативно подберут для вас хорошего преподавателя на выгодных для вас условиях.

Мало информации? - Вы можете !

Можно писать математические вычисления в блокнотах. В блокноты с логотипом (http://www.blocnot.ru) индивидуальным писать намного приятней.

 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!