Определение скорости звука в воздухе методом стоячих волн. Что такое скорость звука

Скорость звука

К основным характеристикам звуковых волн относят скорость звука, его интенсивность - это объективные характеристики звуковых волн, высоту тона, громкость относят к субъективным характеристикам. Субъективные характеристики зависят в большой мере от восприятия звука конкретным человеком, а не от физических характеристик звука.

Измерение скорости звука в твердых телах, жидкостях и газах указывают на то, что скорость не зависит от частоты колебаний или длины звуковой волны, т. е., для звуковых волн не характерна дисперсия. В твердых телах могут распространяться продольные и поперечные волны, скорость распространения которых находят с помощью формул:

где Е - модуль Юнга, G - модуль сдвига в твердых телах. В твердых телах скорость распространения продольных волн почти в два раза больше чем скорость распространения поперечных волн.

В жидкостях и газах могут распространяться лишь продольные волны. Скорость звука в воде находят за формулой:

K - модуль объемного сжатия вещества.

В жидкостях при возрастании температуры скорость звука возрастает, что связано с уменьшением коэффициента объемного сжатия жидкости.

Для газов выведена формула, которая связывает их давление с плотностью:

Впервые эту формулу для нахождения скорости звука в газах использовал И. Ньютон. Из формулы видно, что скорость распространения звука в газах не зависит от температуры, она также не зависит от давления, поскольку при возрастании давления возрастает и плотность газа. Формуле можно придать и более рациональный вид: на основе уравнения Менделеева-Клапейрона:

Тогда скорость звука будет равна:

Формула носит название формулы Ньютона. Рассчитанная с ее помощью скорость звука в воздухе составляет при 273К 280 м/с. Реальная же экспериментальная скорость составляет 330 м/с.

Этот результат значительно отличается от теоретического и причину этого установил Лаплас.

Он показал, что распространение звука в воздухе происходит адиабатно. Звуковые волны в газах распространяются так быстро, что, что созданные локальные изменения объема и давления в газовой среде происходят без теплообмена с окружающей средой. Лаплас вывел уравнение для нахождения скорости звука в газах:

Распространение звуковых волн

В процессе распространения звуковых волн в среде происходит их затухание. Амплитуда колебаний частиц среды постепенно уменьшается при возрастании расстояния от источника звука.

Одной из основных причин затухания волн есть действие сил внутреннего трения на частицы среды. На преодоление этих сил непрерывно используется механическая энергия колебательного движения, что переносится волной. Эта энергия превращается в энергию хаотического теплового движения молекул и атомов среды. Поскольку энергия волны пропорциональна квадрату амплитуды колебаний, то прираспространении волн от источника звука вместе с уменьшением запаса энергии колебательного движения уменьшается и амплитуда колебаний.

На распространение звуков в атмосфере влияет много факторов: температура на разных высотам, потоки воздуха. Эхо - это отраженный от поверхности звук. Звуковые волны могут отражаться от твердых поверхностей, от слоев воздуха в которых температура отличается от температуры соседних слоев.

Сегодня многие новоселы, обустраивая квартиру, вынуждены проводить дополнительные работы, в том числе по звукоизоляции своего жилища, т.к. применяемые стандартные материалы позволяют лишь отчасти скрыть, что творится в собственном доме, и не интересоваться против воли общением соседей.

На в твердых телах влияет как минимум плотность и упругость вещества, противостоящего волне. Поэтому при оборудовании помещений слой, прилегающий к несущей стене, делают звукоизолирующим с «напусками» сверху и снизу. Он позволяет снизить в децибелах иногда более чем в 10 раз. Затем укладывают базальтовые маты, а сверху - гипсокартонные листы, которые отражают звук вовне от квартиры. Когда звуковая волна «подлетает» к такой конструкции, то она затухает в слоях изолятора, которые являются пористыми и мягкими. Если звук имеет большую силу, то материалы, его поглощающие, могут даже нагреваться.

Упругие же вещества, такие, как вода, дерево, металлы, хорошо передают поэтому мы слышим прекрасное «пение» музыкальных инструментов. А некоторые народности в прошлом определяли приближение, например, всадников, прикладывая ухо к земле, которая также является достаточно упругой.

Скорость звука в км зависит от характеристик той среды, в которой он распространяется. В частности, на процесс могут повлиять ее давление, химический состав, температура, упругость, плотность и другие параметры. Например, в стальном листе звуковая волна проходит со скоростью 5100 метров в секунду, в стекле - около 5000 м/с, в дереве и граните - около 4000 м/с. Для перевода скорости в километры в час нужно умножить показатели на 3600 (секунд в часе) и разделить на 1000 (метров в километре).

Скорость звука в км в водной среде различна для веществ с разной соленостью. Для пресной воды при температуре 10 градусов Цельсия она составляет около 1450 м/с, а при температуре в 20 градусов Цельсия и том же давлении - уже около 1490 м/с.

Соленая же среда отличается заведомо большей скоростью прохождения звуковых колебаний.

Распространение звука в воздухе также зависит от температуры. При значении этого параметра, равном 20 звуковые волны проходят со скоростью около 340 м/с, что составляет около 1200 км/час. А при нуле градусов скорость замедляется до 332 м/с. Возвращаясь к нашим изоляторам для квартиры, мы можем узнать, что в таком материале, как пробка, которую часто используют для снижения уровня внешнего шума, скорость звука в км составляет всего 1800 км/ч (500 метров в секунду). Это в десять раз ниже этой характеристики в стальных деталях.

Звуковая волна представляет собой продольное колебание среды, в которой она распространяется. При прохождении, например, мелодии музыкального произведения через какое-то препятствие, уровень его громкости понижается, т.к. изменяется При этом частота остается той же, благодаря чему мы слышим женский голос как женский, а мужской - как мужской. Самым интересным является место, где скорость звука в км близка к нулю. Это - вакуум, в котором волны такого типа почти не распространяются. Чтобы продемонстрировать, как это работает, физики помещают звенящий будильник под колпак, из которого выкачивают воздух. Чем больше разреженность воздуха, тем тише слышен звонок.

Наверное, многие из Вас слышали о таком понятии как скорость звука. Надеюсь большинство из Вас понимает, что это такое. А если даже и нет, то сейчас разберемся.

Что такое скорость?

Во-первых, нужно понимать, что скорость – это физическая величина, показывающая какое расстояние может преодолеть тело за единицу времени. Из этого определения следует, что автомобиль, движущийся со скоростью 70 км/ч, в 99% случаев может проехать 70 километров за один оборот часовой стрелки (то есть за час). 1% случаев скинем на то, что он может поломаться по дороге или дорога закончится. С машиной понятно. Вместо машины можно взять и другие объекты: человек бежит, камень летит, тушканчик прыгает и т д. Все эти тела являются реальными объектами, которые можно увидеть и даже потрогать. Но звук это ведь не камень или самолет, откуда у него скорость?

Понятие состоит из двух слов. С первым мы уже разобрались. Теперь перейдем ко второму. Что такое звук?

Звук – это то, что мы можем слышать, то есть это физическое явление. Это явление возникает в результате распространения звуковой волны в твердой, жидкой или газообразной среде. Звуковая волна очень похожа на обычную морскую волну, которую все видели вживую или по телевизору (не зря же их назвали одинаково – волна ). Но более точно можно представить звуковую волну как круги на воде, которые появляются после бросания камешка. Ведь звук распространяется во все стороны одинаково! Если Вы покричите на стакан с водой, то Вас заберут в дурку Вы сможете увидеть звук!!! В виде кругов на поверхности воды.

То есть звуковая волна – это по сути колебание атомов той среды, в которой распространяется звук. Именно поэтому от громкой музыки трясутся окна.

Теперь мы знаем, что такое скорость и что такое звук, так давайте же соединим эти понятия вместе!

Скорость звука – величина, показывающая на какое расстояние может распространиться звуковая волна за единицу времени.

Как мы уже разобрались, для движения звуковой волны необходимо (воздух, вода, твердое тело), которые будут колебаться. Именно поэтому в космосе нет звука! Так как там нет атомов (практически нет, немножко есть, но очень мало)! И самое интересное, что звук распространяется в воздухе со скоростью 340 м/с, в воде – со скоростью 1500 м/с, а в твердых телах – со скоростями 3000-6000 м/с. В этом нет ничего удивительного, так как чем меньше расстояние между атомами, тем быстрее пробежит звук.

В статье рассмотрены характеристика звуковых явлений в атмосфере: скорость распространения звука в воздухе, влияние на распространение звука ветра, тумана.
Продольные колебания частиц материи, распространяясь по материальной среде (по воздуху, воде и твердым телам) и достигнув уха человека, вызывают ощущения, называемые звуком.
В атмосферном воздухе всегда находятся звуковые волны различной частоты и силы. Часть этих волн создается искусственно человеком, а часть звуков имеет метеорологическое происхождение.
К звукам метеорологического происхождения относятся гром, завывание ветра, гудение проводов, шум и шелест деревьев, «голос» моря, звуки при падении на земную поверхность твердых и жидких осадков, звуки прибоя у берегов морей и озер и другие.
На скорость распространения звука в атмосфере влияет температура и влажность воздуха, а также ветер (направление и его сила). В среднем скорость звука в атмосфере равна 333 м/с. С увеличением температуры воздуха скорость звука несколько возрастает. Изменение абсолютной влажности воздуха оказывает меньшее влияние на скорость звука.
Скорость звука в воздухе определяется формулой Лапласа:

(1),
где р - давление; ? - плотность воздуха; c? - теплоемкость воздуха при постоянном давлении; cp - теплоемкость воздуха при постоянном объеме.
Используя уравнение состояния газа, можно получить ряд зависимостей скорости звука от метеорологических параметров.
Скорость звука в сухом воздухе определяется по формуле:
с0 = 20,1 ?Т м/с, (2)
а во влажном воздухе:
с0 = 20,1 ?ТВ м/с, (3)
где ТВ = так называемая акустическая виртуальная температура, которая определяется по формуле ТВ = Т (1+ 0,275 е/р).
При изменении температуры воздуха на 1° скорость звука изменяется на 0,61 м/с. Скорость звука зависит от величины отношения е/р (отношение влажности к давлению), но эта зависимость мала, и, например, при упругости водяного пара менее 7мм пренебрежение ею дает ошибку в скорости звука, не превышающую 0,5 м/сек.
При нормальном давлении и Т = 0 °С скорость звука в сухом воздухе равна 333 м/сек. Во влажном воздухе скорость звука может быть определена по формуле:
с = 333 + 0,6t + 0,07е (4)
В диапазоне температур (t) от -20° до +30° эта формула дает ошибку в скорости звука не более ± 0,5 м/сек. Из приведенных формул видно, что скорость звука повышается с повышением температуры и влажности воздуха.
Ветер оказывает сильное влияние: скорость звука по направлению движения ветра увеличивается, против ветра — уменьшается. Наличие ветра в атмосфере вызывает дрейф звуковой волны, что создает впечатление смещения источника звука. Скорость звука в этом случае (c1) определится выражением:
c1 = c + U cos ?, (1)
где U-скорость ветра; ? — угол между направлением ветра в точке наблюдения и наблюдаемым направлением прихода звука.
Знание величины скорости распространения звука в атмосфере имеет большое значение при решении ряда задач по изучению верхних слоев атмосферы акустическим методом. Пользуясь средней скоростью звука в атмосфере, можно узнать расстояние от своего местонахождения до места возникновения грома. Для этого нужно определить число секунд между видимой вспышкой молнии и моментом прихода звука грома. Затем надо умножить среднее значение скорости звука в атмосфере — 333 м/сек. на полученное число секунд.

Скорость звука - скорость распространения упругих волн в среде: как продольных (в газах, жидкостях или твёрдых телах), так и поперечных, сдвиговых (в твёрдых телах). Определяется упругостью и плотностью среды: как правило, в газах скорость звука меньше, чем в жидкостях , а в жидкостях - меньше, чем в твёрдых телах. Также, в газах скорость звука зависит от температуры данного вещества , в монокристаллах - от направления распространения волны. Обычно не зависит от частоты волны и её амплитуды ; в тех случаях, когда скорость звука зависит от частоты, говорят о дисперсии звука.

Энциклопедичный YouTube

  • 1 / 5

    Уже у античных авторов встречается указание на то, что звук обусловлен колебательным движением тела (Птолемей , Евклид). Аристотель отмечает, что скорость звука имеет конечную величину, и правильно представляет себе природу звука . Попытки экспериментального определения скорости звука относятся к первой половине XVII в. Ф.Бэкон в «Новом органоне » указал на возможность определения скорости звука путём сравнения промежутков времени между вспышкой света и звуком выстрела. Применив этот метод, различные исследователи (М.Мерсенн , П.Гассенди , У.Дерхам , группа учёных Парижской академии наук - Д.Кассини , Ж.Пикар , Гюйгенс , Рёмер) определили значение скорости звука (в зависимости от условий экспериментов, 350-390 м/с). Теоретически вопрос о скорости звука впервые рассмотрел И.Ньютон в своих «Началах ». Ньютон фактически предполагал изотермичность распространения звука, поэтому получил заниженную оценку. Правильное теоретическое значение скорости звука было получено Лапласом .

    Расчёт скорости в жидкости и газе

    Скорость звука в однородной жидкости (или газе) вычисляется по формуле:

    c = 1 β ρ {\displaystyle c={\sqrt {\frac {1}{\beta \rho }}}}

    В частных производных:

    c = − v 2 (∂ p ∂ v) s = − v 2 C p C v (∂ p ∂ v) T {\displaystyle c={\sqrt {-v^{2}\left({\frac {\partial p}{\partial v}}\right)_{s}}}={\sqrt {-v^{2}{\frac {C_{p}}{C_{v}}}\left({\frac {\partial p}{\partial v}}\right)_{T}}}}

    где β {\displaystyle \beta } - адиабатическая сжимаемость среды; ρ {\displaystyle \rho } - плотность; C p {\displaystyle C_{p}} - изобарная теплоемкость; C v {\displaystyle C_{v}} - изохорная теплоемкость; p {\displaystyle p} , v {\displaystyle v} , T {\displaystyle T} - давление, удельный объём и температура среды; s {\displaystyle s} - энтропия среды.

    Для растворов и других сложных физико-химических систем (например, природный газ, нефть) данные выражения могут давать очень большую погрешность.

    Твёрдые тела

    При наличии границ раздела, упругая энергия может передаваться посредством поверхностных волн различных типов, скорость которых отличается от скорости продольных и поперечных волн. Энергия этих колебаний может во много раз превосходить энергию объемных волн.

 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!