Дыхательный клапан акваланга. Выбор акваланга. Виды баллонов рекреационного погружения

Самодельный акваланг - это недорогое устройство для дыхания под водой. Авторы многочисленных отзывов уверяют, что данный аппарат может заменить дорогостоящее дайверское оборудование в случае проведения погружений на глубину до четырех метров. Итак, акваланг самодельный - что он собой представляет и как его изготовить?

Зависимость человека от техники

Задавшиеся вопросом о том, как сделать самодельный акваланг, должны помнить, что любая человеческая деятельность, не связанная с использованием каких-либо приборов, снаряжения или другой техники, заставляет надеяться только на собственное везение или помощь друга. К таковым, к примеру, относится обычное плавание. Использование человеком техники — автомобиля или акваланга - многократно преумножает его возможности. Но пропорционально сложности техники возрастает и зависимость от нее человека.

Ныряльщик, оснащенный комплектом «маска, ласты, трубка», оказывается в неприятной ситуации при потере им под водой чего-нибудь из имеющегося снаряжения. Но в гораздо более сложное положение попадает аквалангист, если под водой вдруг прекращается подача воздуха. Это может случиться на глубине, с которой невозможно всплыть на одном дыхании. Громоздкий акваланг уменьшает подвижность и увеличивает сопротивление воды. Подобная чрезвычайная ситуация может произойти подо льдом или в пещере. Подводники должны с большим вниманием относиться к применяемой технике. Особенно это касается тех, кто решил изготовить самодельный акваланг.

О сложности вопроса

Современное снаряжение аквалангиста ориентировано на его комфорт и безопасность. Все узлы и элементы оснащения должны быть продуманы до мелочей. Специалистами разработаны правила по применению снаряжения, нарушать которые настоятельно не рекомендуется. Любитель-новичок при возникновении малейших трудностей в эксплуатации оборудования должен обратиться за советом к своему тренеру, так как беспроблемное использование аппаратуры является залогом безопасного

Акваланг является достаточно сложным устройством. Специалисты уверяют, что создать акваланг самодельный в домашних условиях довольно непросто. Для этого необходимо обладать соответствующими знаниями и иметь возможность работать на хорошем токарном оборудовании. Те, кого заинтересовал вопрос, как сделать самодельный должны узнать об этом устройстве как можно больше.

История

Слово «акваланг» в переводе означает «водяные легкие». История свидетельствует, что аппарат создавался постепенно. Первым запатентовали регулятор подачи воздуха с поверхности и приспособили его для применения в акваланге. В 1878 году был изобретен В нем использовался чистый кислород. В 1943 году был создан первый акваланг. Его авторами стали французы Эмиль Ганьян и Жак-Ив Кусто.

Устройство

Те, кто решили создать акваланг самодельный, должны знать, что данный аппарат состоит из 3-х основных частей и нескольких дополнительных устройств:

  • Баллон . Обычно применяют одну или две ёмкости с сжатой дыхательной смесью. Каждая ёмкость вмещает 7 - 18 л.
  • Регулятор . Состоит из редуктора и лёгочного автомата. Акваланг может содержать один или несколько редукторов.
  • Компрессор плавучести. Надувной жилет, специальное назначение которого - регуляция глубины погружения.
  • Манометр , оснащенный сигналом, срабатывающим при достижении давления воздуха до 30 атмосфер.

Особенности

Желающим создать акваланг самодельный необходимо знать об особенностях его составляющих.

  • Баллон высокого давления, входящий в состав акваланга, является резервуаром для хранения воздуха. Рабочее давление в нем - 150 атмосфер. Стандартный баллон емкостью в 7 л при таком давлении вмещает в себя 1050 л воздуха.
  • Используются акваланги одно-, двух- или трёхбаллонные. Обычно емкость баллонов - 5 и 7 л, но при необходимости применяются баллоны 10-, 14- литровые.
  • Форма баллонов - цилиндрическая, с вытянутой горловиной, снабженной внутренней резьбой для крепления трубки высокого давления или патрубка.
  • Баллоны выполняются из стали или алюминия. Стальные баллоны покрываются защитным антикоррозийным слоем, в качестве которого применяют цинк. Баллоны из стали являются более прочными по сравнению с алюминиевыми, но они отличаются меньшей плавучестью.
  • Баллоны заполняются газовой смесью или сжатым фильтрованным воздухом. Современные емкости оснащены защитой от переполнения.
  • Они подсоединяются к воздушному редуктору, на всем протяжении работы акваланга снижающему давление со 150 до 6 атмосфер. С такими показателями давления дыхательная смесь поступает в легочный автомат.
  • Легочный автомат является главным приспособлением в устройстве акваланга, так как с его помощью подается воздух для дыхания, давление которого равно давлению воды на область грудной клетки дайвера.

Типы акваланга

Решившим сконструировать акваланг самодельный следует знать, что в дайвинге используется три типа оборудования: с открытой, замкнутой, полузакрытой схемами. Их отличает друг от друга используемый способ дыхания.

Открытая схема

Используется в недорогой, лёгкой и не имеющей больших габаритов экипировке. Работает исключительно на подачу воздуха. При выдыхании переработанный состав выбрасывается в окружающую среду, не смешиваясь с заполняющей баллоны смесью. Благодаря этому исключается кислородное голодание или отравление углекислым газом. Система отличается простотой конструкции и является безопасной в эксплуатации. Но в ней имеется существенный недостаток: она не приспособлена для ввиду высокого расхода дыхательной смеси на большой глубине.

Замкнутая схема

Акваланг работает по следующему принципу: ныряльщик выдыхает воздух, который перерабатывается - очищается от углекислоты, насыщается кислородом, после чего он опять пригоден для дыхания. Преимущества системы:

  • небольшая масса;
  • незначительные габариты снаряжения;
  • возможно погружение на глубоководье;
  • предусмотрено длительное пребывание аквалангиста под водой;
  • имеется возможность для дайвера оставаться незамеченным.

Данный тип экипировки рассчитан на наличие высокого уровня подготовки, новичкам его использовать не рекомендуют. К недостаткам системы относят ее значительную стоимость.

Полузакрытая схема

Принцип действия такой системы - гибрид открытой и закрытой схем. Часть переработанной смеси обогащается кислородом, после чего она вновь доступна для дыхания, а ее избыток выводится в окружающую среду. При этом разная глубина погружения предусматривает использование различных газовых дыхательных коктейлей для дыхания.

Резервный источник

Многими дайверами в качестве резервного баллона используются мини-акваланги. Мини-модель - это компактная система, предназначенная для дыхания под водой на незначительной глубине. В нее входит редуктор с загубником и малолитражная ёмкость с воздухом. Показатели объёма воздуха зависят от индивидуальных характеристик аквалангиста.

Применение акваланга

Акваланг помогает человеку плавать под водой свободно. Исключается необходимость все время ходить по дну или пребывать в вертикальном положении. Этим обусловлено широчайшее применение оборудования не только дайверами, но и кинооператорами, ремонтниками, археологами, ихтиологами, гидротехниками и фотографами и др.

Многие пытаются изготовить акваланг самодельный своими руками. Мотивацией для принятия такого решения может быть как желание сэкономить, так и неодолимая любовь к техническому творчеству. Пользователи сетей охотно делятся советами и рекомендациями относительно производства аппарата в домашних условиях.

«Спарка»: самодельный акваланг из газового баллона

Понадобятся:

  • металлокомпозитные, стальные авиационные с клапанами отсечки кислородной магистрали (от обратного удара) и обратными зарядными клапанами. Объем каждого: 4 л, вес: 4.200, рабочее давление: 150 бар.
  • Авиационный кислородный вентиль
  • Маховик самодельный.
  • Редуктор от катапультного авиационного кресла.
  • Советский газовый редуктор для пропана.
  • Самодельная пружина из стальной и др.

Как изготовить?

  1. Баллоны соединяются при помощи хомутов из нержавейки (можно изготовить из баков стиральной машины). Между баллонами вставляются вставки из дерева, обтянутые тканью на эпоксидной основе, с черной краской ПФ. В крышке редуктора сверлятся отверстия, для того чтобы не застаивалась вода.
  2. Автоматическое включение кислородной системы убирается. Устанавливается рычаг с чекой.
  3. Самодельный регулятор для акваланга можно изготовить из подсоединенной к предохранительному клапану редуктора пружины из стальной нержавеющей проволоки и дюралевой крышки со штуцером на выход для подсоединения легочного автомата. Производится регулировка редуктора (установка давления - 6.5 бар).
  4. Легочный автомат можно изготовить из советского газового редуктора. В его корпус нужно вставить 2 штуцера, изготовленные из дюралевой трубки (диаметр - 16.5 мм). На один из них надеть загубник с хомутом из нержавеющей пластины. В другой вклеить текстолитовый стакан с клапаном от противогаза. Если один грибковый клапан быстро выходит из строя, его следует изготовить из резинового армированного кружка (можно вырезать из бахил советского химкомплекта) и болта с гайкой, крепящего клапан непосредственно к седлу. Вместо старого присоединительного штуцера изготовляется новый из дюрали, который вклеивается на эпоксидной основе на место старого. Диаметр седла клапана - 2,5 мм.
  5. Для противодействия открывающей силе сжатого воздуха в крышке устанавливают самодельную тянущую пружину, которую цепляют в верхней части крышки за горизонтальную шпильку.
  6. Мембрана изготавливается из той же резины от бахил. На нее устанавливают шайбу с незначительным весом для устранения вибрации при вдохе. Подушку клапана вдоха можно выточить на высокооборотном наждаке вручную из куска резины.
  7. Легочный автомат стягивают тремя болтами. Затянутые даже вручную, они способны хорошо держать мембрану. Нижняя часть лёгочного автомата для дополнительной комфортности применения оборудования оснащается пластиной из нержавейки на заклепках, которая устанавливается под подбородком.
  8. Плечевые капроновые ремни изготавливаются из кусков фала без регулировки ввиду отсутствия необходимости. В поясном ремне может отсутствовать быстроразъёмная пряжка.

Описание результата

На глубине 10 м акваланг позволяет выполнять тяжелую физическую работу (таскание по дну булыжников или быстрое плавание) без эффекта недостатка воздуха. Не оснащен кнопкой продува, но и без нее вполне можно обойтись. Легочный автомат нуждается в настройке только при первом применении, после чего минимальная настройка производится движением клапанов вдоха. Работает при давлении в 6-7 бар. Усилия на вдох характеризуются как вполне приемлемые, аналогичные к АВМ-5. Вес - 300 г. Подсоединяется к шлангу без прокладок, при помощи конусного соединения. Аппарат является весьма лёгким (около 11,5 кг), компактным и обтекаемым. В нем отсутствует указатель минимального давления.

Еще один вариант самодельного акваланга из газовых баллонов

  1. Приготовить баллон. Используется емкость объемом от до 22 л, в зависимости от предпочтений. Можно воспользоваться 2 баллонами по 4,7-7 л. Для обычного дайвинга годится баллон на 200 бар, для технического - 300 бар.
  2. Подготовить редуктор с давлением, аналогичным давлению баллона.
  3. Соединить редуктор с баллоном. Убедиться, что давление в нем на 6-11 бар выше, нежели давление окружающей среды.
  4. Подсоединить к редуктору шланг, к шлангу прикрепить легочный автомат. При его исправной работе и недопущении мастером ошибок давление соответствует давлению окружающей среды.
  5. Присоединить регуляторы. Их количество зависит от поставленных задач. Для планируемого любительского дайвинга нужны 2 регулятора: основной и резервный.
  6. Установить компенсатор плавучести (не обязательно для правильного функционирования акваланга, но упрощает и делает дайвинг более безопасным).
  7. Накачать кислородом баллон и проверить собранную систему. Если все ее элементы присоединены без ошибок и аппарат работает, следует провести первое пробное погружение на незначительную глубину. Если оно прошло успешно, акваланг можно считать готовым к эксплуатации.

Самодельный акваланг из огнетушителя

  1. Используется баллон от углекислотного огнетушителя (давление - 150 бар, емкость - 5 л, вес - около 7.5 кг)
  2. Вентиль необходимо обточить до круглой формы, вкрутить в Т-образный штуцер (из баллона от катапультного кресла), который должен быть оснащен клапаном зарядки.
  3. На нем устанавливаются две дюралевые пластины, стянутые между собой.
  4. На них укрепляется редуктор, который представляет собой переделанную вторую ступень редуктора кислорода от катапультного кресла (работает от 8 бар).
  5. Изготавливается самодельный предохранительный клапан, диаметр мембраны уменьшается с помощью 2-х пластин.
  6. Изготавливается седло клапана редуктора диаметром 1, 2 мм, подушка клапана (из фторопласта), кроме того, необходимо произвести еще некоторые другие незначительные переделки.
  7. Легочный автомат аналогичен вышеописанной модели (см. раздел «Спарка»: самодельный акваланг из газового баллона»). Используется корпус от другого редуктора, а также самодельные клапаны выдоха и вдоха. Баллон закрепляется при помощи дюралевых хомутов на стеклопластиковой спинке.

Результат

Аппарат является надежным и безотказным в работе. Основная проблема в обслуживании - коррозия дюралевого корпуса редуктора в соленой воде. Для решения проблемы рекомендуется применять силиконовую смазку. Оборудование не оснащено манометром, отсутствуют фильтры (можно использовать сифонную трубку в баллоне с небольшими отверстиями на конце). Вес - 9,5 кг.

В интернете имеются и другие варианты самодельных моделей аквалангов из огнетушителя.

Вариант №1

  • Аппарат изготавливают из баллона - ресивера (2 л) от огнетушителя.
  • Пристегивается к области груди.
  • Вместо регулятора используется самодельная пневмокнопка для ручной подачи воздуха на вдох.
  • Аппарат оснащен обратным клапаном, которым отсекается воздушная магистраль в случае разрыва шланга, подающего воздух.
  • Отсутствует редуктор, поэтому используется на ограниченной глубине погружения.
  • Мембрану к седлу клапана прижимает пружина. При нажатии на рычаг она поднимается и воздух идет на вдох. Выдох производится в воду при помощи клапана выдоха.
  • Подача воздуха с поверхности осуществляется от транспортного сварочного баллона объемом до 40 л. К аппарату подсоединяется легочный автомат.
  • Закрепленная на руке пневмокнопка удобнее кнопки, которую приходится держать в руке. Рука частично высвобождается и используется для выполнения какой - либо работы.

Вариант №2

  • Применяется баллон от огнетушителя (1.5 л).
  • В аппарате используется система ручной подачи на вдох.
  • Оборудование оснащено клапаном - пневмокнопкой, вентилем и редуктором.
  • Состоит из трубки, вкрученной в штуцер от огнетушителя, в которой находится обратный пластиковый клапан, прижатый к конусному седлу сжатым воздухом и пружиной. На трубку накручивают корпус с мембраной и шпилькой, давящей на пластиковый клапан. С обратной стороны расположен рычаг, предназначенный для нажимания пальцем.
  • Воздух, выходящий из этого устройства, проходит через дюзу (диаметр - 2 мм), затем идет на вдох в загубник. Выдох осуществляется с помощью клапана.
  • Грузовой пояс достаточно прост в изготовлении. Производится из свинцовых цилиндров, отлитых из дюралевой трубки с продольным разрезом. Оснащен самодельной быстроразъёмной пряжкой.

В надежном функционировании аппаратуры сомневаться не приходится, но проблематичной является герметичность пластикового клапана, закрывающего баллон

Как изготовить акваланг из бутылки?

Интернет предлагает инструкцию, как сделать самодельный акваланг из бутылки. По словам предоставившего ее автора, для этого можно использовать опрыскиватель, применяемый в садоводстве. Легче всего его найти в специализированном магазине для садоводов. При выборе емкости не следует отдавать предпочтение слишком большим бутылкам: они будут сильно «тянуть» кверху.

Понадобятся:

  • опрыскиватель (помповый);
  • гибкий шланг (пластиковый);
  • подводная трубка, используемая для ныряния;
  • емкость (бутылка).

Технология:

  1. Сначала снимают установленный в опрыскивателе ограничитель. Это необходимо для того, чтобы как можно больше воздуха выходило из опрыскивателя.
  2. На верхнюю часть опрыскивателя натягивается шланг, тщательно герметизируется силиконом или горячим клеем.
  3. На нижней части подводной трубки устанавливается крышка от пластиковой бутылки, с предварительно просверленным отверстием по диаметру шланга.
  4. В отверстие вставляется шланг, тщательно заклеивается, герметизируется. Несложный акваланг готов.

Принцип действия

Бутылка соединяется с помповым опрыскивателем и наполняется воздухом. Емкость в 330 мл наполняется воздухом при помощи 50 качков. Такое количество воздуха является достаточным для 4 полных вдохов. Емкость большего размера следует оснастить грузом, так как наполненная воздухом бутылка, всплывать вверх. Для извлечения воздуха из бутылки, достаточно нажатия на соответствующую кнопку на распылителе.

Заключение

Самостоятельное изготовление акваланга позволит сэкономить средства и предоставит возможность ощутить ни с чем не сравнимое удовольствие от участия в творческом процессе. В целях обеспечения безопасности собственной жизни и здоровья умельцам необходимо неукоснительно соблюдать инструкцию.

переводится, как "водяные легкие". Создание составных частей акваланга происходило постепенно. Сначала был запатентован регулятор подачи воздуха с поверхности, затем он был приспособлен для использования в акваланге. Первый удачный аппарат для дыхания под водой, использующий чистый кислород, был изобретён в 1878 году. Первый акваланг был создан в 1943 году французами Жаком-Ивом Кусто и Эмилем Ганьяном.

Акваланг может быть одно-, двух- или трёхбаллонным с воздухом, находящемся под давлением 150-200 атмосфер. Обычно используются баллоны емкостью 5 и 7 литров, но при необходимости можно воспользоваться баллонами на 10 и даже 14 литров. Они имеют цилиндрическую форму с вытянутой горловиной, которая снабжена внутренней резьбой для крепления патрубка или трубки высокого давления. Баллоны выполняются из алюминия или стали. Стальные баллоны должны быть покрыты защитным слоем, без которого их внешняя часть подвергается коррозии. В качестве такого покрытия используется цинк. Баллоны из стали более прочные и обладают меньшей плавучестью. Заполняются баллоны сжатым и фильтрованным воздухом или газовой смесью. Современные баллоны имеют защиту от переполнения. Акваланг снабжён лёгочным автоматом и ремнями для крепления к телу человека.

Все акваланги подразделяются на три вида по типу схемы дыхания: с открытой, полузакрытой и закрытой схемой.

Если акваланг работает на принципе пульсирующей подачи воздуха для дыхания (только на вдох) с выдохом в воду, то это открытая схема. При этом выдыхаемый воздух не перемешивается с вдыхаемым и повторное его использование исключается, в отличие от аппаратов с замкнутым циклом.

В аквалангах с замкнутой схемой дыхания из выдыхаемого дайвером воздуха удаляется углекислый газ и по потребности добавляется кислород. В этом случае один и тот же объём воздуха используется для дыхания несколько раз. Используя такой тип акваланга, дайвер менее замете для обитателей подводного мира и не пугает их, так как отсутствуют пузырьки выдыхаемого воздуха.

При полузакрытой схеме часть выдыхаемого воздуха идёт на регенерацию, а часть – в воду.

Дыхание в акваланге открытого типа осуществляется следующим образом: сжатый воздух поступает в легкие через загубник из дыхательного автомата, а выдох производится непосредственно в воду. Для подачи воздуха служит регулятор, присоединяющийся к выходу баллонного блока. Из каждого баллона поочередно воздух идет в регулятор через стопорные краны. По манометру, соединённому с регулятором, можно убедиться в том, баллон заполнен воздухом в соответствии с рабочим давлением, а, протянув руку назад и повернув стопорные краны, узнать, сколько у Вас в баллонах осталось воздуха.

Вторая ступень регулятора – легочный (дыхательный) автомат, преобразует воздух, выходящий из первой ступени регулятора до давления окружающей среды и подаёт его к дыхательным органам человека в необходимом количестве. Дыхательные автоматы делятся на две группы – с поточным и противоточным механизмом клапана. В большинстве современных аквалангов устанавливается дыхательный аппарат с поточным механизмом клапана. Клапан открывается потоком воздуха, идущим из первой ступни во время вдоха и перекрывает трубку выдоха, а при выдохе - трубку вдоха. Таким образом, в аквалангах с замкнутым циклом, предотвращается потеря чистого воздуха и вдыхание уже использованного.

По своему устройству акваланги бывают одноступенчатыми и двухступенчатыми, без разделения ступеней редуцирования воздуха и с разделением. В наше время используются двухступенчатые автоматы с разделенными ступенями редуцирования.

Как и парашютисты, дайверы тоже предпочитают иметь резервные аварийные системы на случай отказа основных. Вот это компактное устройство под названием «SPARE AIR» (в буквальном переводе «Запасной воздух») представляет собой акваланг в миниатюре. Баллон и редуктор-регулятор с загубником для дыхания собраны «в одном флаконе». Емкость баллона невелика, но ее хватает, чтобы безопасно всплыть с глубины порядка 40 м.

Автономная подводная дыхательная система (scuba) в сборе 1 — редуктор (первая ступень) 2 — манометр давления воздуха в баллоне 3 — основной регулятор (вторая ступень) 4 — резервный регулятор (октопус) 5 — баллон высокого давления 6 — надувной жилет (компенсатор плавучести)

После автоспорта дайвинг — технически самый сложный вид спорта


Основная проблема под водой — человеку там нечем дышать! Именно поэтому все изобретения, связанные с подводным оборудованием, были в первую очередь посвящены обеспечению свободного дыхания.

Эволюция мысли

Эволюция подводного дыхательного оборудования довольно интересна и вполне отражает общий ход человеческой мысли. Первое, что приходит в голову, — если под водой воздуха нет, его надо туда подать. Простейший способ сделать это — дыхательная трубка, один конец ее находится над водой. Однако не все так просто! Если вы когда-нибудь пробовали нырять, пытаясь дышать через длинную трубку или шланг, то знаете, что человеческие легкие не в силах преодолеть давление воды и сделать вдох уже на глубине 1−1,5 м. Поэтому этот способ годится только для плавания по поверхности, и многие из наших читателей наверняка не раз его использовали, плавая с трубкой и маской. Следующая идея — дышать воздухом под давлением, равным давлению воды, привела к изобретению водолазного колокола. Его в 1530 году предложил Гульельмо де Лорено. Конструкция колокола была очень проста — пустотелая бочка без дна, погруженная открытым концом в воду. Давление в таком колоколе за счет открытого конца бочки и, следовательно, подвижной границы «воздух — вода», равно внешнему давлению воды на данной глубине. Работая под водой, можно время от времени делать вдох из бочки, не всплывая при этом на поверхность. Одно плохо — воздух в бочке быстро заканчивается.

Конечно, запас воздуха можно пополнять. Подавая воздух в колокол с поверхности с помощью насоса, можно значительно продлить пребывание человека под водой. Конечно, это потребует использования воздушного насоса (причем чем глубже мы погружаемся, тем мощнее должен быть насос). Однако работать (или просто наблюдать подводный мир) все равно не слишком удобно: водолаз остается довольно жестко привязан к поверхности шлангом и колоколом и способен «оторваться» от них только на время задержки дыхания.

Все свое ношу с собой

Увы, эту проблему можно преодолеть только с помощью автономного дыхательного аппарата. В английском языке для обозначения таких аппаратов есть специальная аббревиатура — SCUBA (Self-contained Breathing Underwater Apparatus). Первый такой аппарат был предложен в 1825 году англичанином Уильямом Джеймсом. Аппарат представлял собой жесткий баллон в виде пояса вокруг талии водолаза, наполненный воздухом под давлением около 30 атмосфер, и дыхательный шланг, соединяющий баллон с водолазным шлемом. Он был неудобен: воздух подавался в шлем постоянно и за счет этого (и еще низкого давления в баллоне) быстро заканчивался.

Чтобы преодолеть этот недостаток, необходимо подавать воздух для дыхания только в момент вдоха. Это делается с помощью мембранно-управляемых клапанов, реагирующих на разрежение, создаваемое легкими. Именно так и был устроен аппарат «Аэрофор», изобретенный в 1865 году французами Бенуа Рукейролем и Огюстом Денейрузом. Их конструкция представляла собой горизонтально расположенный на спине ныряльщика стальной баллон с воздухом под давлением 20−25 атмосфер, соединенный через редукционный клапан с загубником. Мембранный редукционный клапан подавал воздух только в момент вдоха под давлением, равным давлению воды.

«Аэрофор» не был полностью автономен: баллон был соединен шлангом, по которому подавался воздух, с поверхностью, но в случае необходимости ныряльщик мог на короткое время отсоединяться. «Аэрофор» является предшественником современного оборудования открытого цикла дыхания (ныряльщик вдыхает воздух из баллона, выдыхает в воду) для погружений. Он в течение нескольких лет использовался французским (и не только) военно-морским флотом и даже в 1870 году удостоился упоминания в книге Жюля Верна «Двадцать тысяч лье под водой».

До современного вида аппарату «Аэрофор» оставался всего один шаг — это шаг к запасу воздуха под высоким давлением. И этот шаг был сделан. Но «шаг вперед, два шага назад» — в 1933 году капитан французского военного флота Ив Ле Приор модифицировал аппарат Рукейроля-Денейруза, сочетая ручной вентиль с баллоном высокого давления (100 атмосфер). Это позволило получить большее время автономности, но управление было крайне неудобным — при вдохе вентиль открывался вручную, выдох же производился в маску (через нос).

И, наконец, в 1943 году Жак Ив Кусто и Эмиль Ганьян собирают все идеи воедино и придают дыхательному аппарату тот вид, в котором он и дошел до нас. Они соединяют два баллона с воздухом (100−150 атмосфер), специальный понижающий газовый редуктор и клапан, подающий воздух под давлением, в точности равным давлению внешней среды, причем только в момент вдоха. Регулятор Рукейроля-Денейруза, на 78 лет опередивший конструкцию Кусто и Ганьяна, по непонятным причинам оказался забыт.

Кусто и Ганьян решили назвать свой аппарат «Aqua Lung», то есть «Подводные легкие». Именно под этим названием он и стал известен всему миру. Слово «акваланг» стало нарицательным и вошло во многие языки мира как синоним подводного дыхательного аппарата.

Современный акваланг

Давайте рассмотрим подробнее, как же работает современный акваланг. Несмотря на то что с 1943 года прошло довольно много лет, современные дыхательные аппараты совсем недалеко ушли от своего предка — акваланга Кусто-Ганьяна. Да, разумеется, изменились технологии, появились новые материалы, но принципы работы остались абсолютно теми же.

Основные составляющие части дыхательного аппарата — это баллон с воздухом под высоким (200−300 атмосфер) давлением и двухступенчатый редуктор.

Для чего нужен редуктор?

Дело в том, что подавать для дыхания воздух напрямую из баллона под давлением 200 атмосфер просто опасно: легкие не выдержат такого давления. Поэтому к баллону присоединяется специальный редуцирующий (понижающий давление) клапан. Его первая ступень снижает давление до 6−15 атмосфер (в зависимости от конструкции и модели).

Вторая ступень, называемая обычно регулятором (или легочным автоматом), выполняет две важные задачи. Первая — подавать воздух под давлением, точно соответствующим давлению воды на любой глубине. Это позволяет аквалангисту на любой глубине дышать, не прилагая усилий и не чувствуя дискомфорта.

Вторая задача регулятора — подавать воздух для дыхания только в момент вдоха (это позволяет расходовать воздух значительно экономнее). В момент вдоха легкие человека создают разрежение, специальный клапан с мембранным управлением реагирует на это и открывает подачу воздуха.

Выдох происходит через тарельчатые мембранные клапаны прямо в воду. Таким образом, воздух используется всего один раз. Поэтому иногда акваланг называют дыхательной системой открытого цикла.

Как видите, конструкция акваланга очень проста и, следовательно, надежна. Простота изготовления и технического обслуживания и надежность обеспечили аквалангу многолетний успех. Именно с акваланга началась настоящая эра освоения морских глубин.

Многие начинающие дайверы, решившие приобрести своё собственное снаряжение, задаются вопросом, как выбрать акваланг. Сегодня специализированные магазины предлагают широкий для дайвинга, рассчитанной как для начинающих ныряльщиков, так и для дайверов с опытом. Чтобы решить, какое снаряжение покупать, следует понять, в чём между ними разница.

Из чего состоит акваланг

Акваланг состоит из следующих составных частей:

  • баллон. Применяют обычно одну или две ёмкости, заполненные дыхательной смесью. Одна ёмкость вмещает в себя от 7 до 18 литров сжатого воздуха;
  • регулятор. Как правило, состоит из двух частей - редуктора и лёгочного автомата. В одном акваланге может содержаться от одного до нескольких редукторов;
  • компрессор плавучести. Это специальный надувной жилет, благодаря которому дайвер может регулировать глубину погружения.

Типы акваланга

Используется три типа аквалангов, различающихся между собой принципом дыхания.

Открытая схема

Достаточно недорогая, лёгкая и не имеющая больших габаритов экипировка. Этот тип дыхания работает только на подачу дыхательной смеси. Переработанный воздух при выдыхании выбрасывается в окружающую среду и не смешивается с воздухом в баллонах. Это позволяет избежать кислородного голодания или отравления углекислым газом. Отличается простотой конструкции и безопасен в использовании. Однако имеется один существенный недостаток: модели с открытой схемой дыхания не предназначены из-за высокого расхода дыхательной смеси на глубине.

Замкнутая схема

Принцип работы такого типа акваланга заключается в том, что выдыхаемый ныряльщиком переработанный воздух проходит очистку от углекислоты, насыщается кислородом и вновь становится пригодным для дыхания. Такая система обладает большим количеством преимуществ:

  • небольшая масса и габариты снаряжения;
  • возможность погружения на глубоководье;
  • большая длительность ;
  • возможность оставаться незамеченным.

Однако настоящий тип экипировки рассчитан на высокий уровень подготовки и не подходит новичкам. К недостаткам можно отнести значительную стоимость.

Полузакрытая схема

Принцип работы такой системы является гибридом открытой и закрытой схем дыхания. То есть часть переработанного воздуха вновь обогащается кислородом и становится доступной для дыхания, а избыток выбрасывается в окружающую среду. При этом для разной глубины погружения используются разные газовые коктейли для дыхания.

Резервный источник дыхания

Многие дайверы в качестве резервного баллона предпочитают использовать мини-акваланги. Мини-модели представляют собой компактную систему, предназначенную для дыхания под водой на небольшой глубине. В систему мини-акваланга входит малолитражная ёмкость с воздухом и редуктор с загубником. Объём воздуха зависит .

Выбор баллона

Выбирая баллоны для дайвинга, необходимо обратить внимание на их определённые характеристики.

Материал

Как правило, ёмкости для дыхательных смесей изготавливают из стали или алюминия. Стальные имеют повышенную прочность, но подвержены коррозии, чего нельзя сказать об алюминиевых. Однако большинство предпочитают приобретать именно баллоны из стали, поскольку при правильной эксплуатации они способны прослужить не один год.

Количество и объём

Какое количество баллонов приобретать - дело личных предпочтений. Нет разницы, что использовать: один баллон с объёмом 14 литров или два баллона по 7 литров. Объём следует увеличивать, если планируется погружение, требующее большого запаса дыхательной смеси.

Многие профессиональные дайверы предпочитают не приобретать баллоны, а вместо этого покупают собственный компрессор. Имея свой компрессор, баллоны можно просто брать напрокат и заправлять их самостоятельно. Приобретать новый компрессор или б/у - дело личных предпочтений и финансовых возможностей, поскольку стоит компрессор достаточно дорого. Новичкам же приобретать собственный компрессор рекомендуется только в том случае, если дайвингом планируется заниматься всерьёз и надолго.

Для новичков, не знающих, как выбрать акваланг, рекомендуется обращаться в специализированные магазины, где консультанты дадут все необходимые профессиональные рекомендации. Экономить на снаряжении не стоит, поскольку качественное спряжение исправно прослужит не один год.

Прежде чем начать заниматься киносъемкой под во дой, совершенно необходимо хорошо освоить теорию и практические упражнения по технике подводного спорта. После того как акваланг, маска, ласты и дыхательная трубка станут настолько привычными и естественными, что их перестаешь ощущать, можно браться и за подводный киноаппарат.

ПРИГОДНОСТЬ К ПОДВОДНОМУ ПЛАВАНИЮ

Говоря о подводном плавании, сразу же следует разграничить плавание и ныряние с дыхательной трубкой от плавания с аквалангом. Первый случай более прост и доступен, но во втором случае оператор, превратившись в человека-амфибию, получает для съемки неизмеримо лучшие возможности.

Всякий человек со здоровыми ушами и сердцем пригоден для подводного плавания. Иногда быстрому овладению этим искусством мешают два обстоятельства: некоторая водобоязнь, а также встречающееся у некоторых людей затрудненное дыхание через рот (при подводном плавании дышат только ртом). Эти препятствия можно преодолеть (причем первое очень легко) практическими упражнениями в плавании с маской и дыхательной трубкой. Смотровое стекло маски придает человеку в воде уверенность, так как оно дает возможность видеть дно и все окружающие предметы. Поскольку маска выполняет также и роль поплавка, новичок бывает немало удивлен тем, что он не тонет даже тогда, когда не делает ни малейшего движения, и это придает ему чувство уверенности и безопасности (рис. 16).

Затрудненное дыхание через рот (что встречается довольно редко) объясняется. чисто нервным состоянием, вызванным страхом задохнуться, поскольку дыхание в этом случае бывает не совсем свободным. Примерно то же самое некоторые испытывают и в противогазе. Несколько тренировок с дыхательной трубкой должны рассеять страх. После этого пловец будет хорошо чувствовать себя в воде при погружении и нормально дышать через мундштук акваланга. В отечественной водолазной практике распространено другое название дыхательного мундштука - загубник. Это название произошло оттого, что резиновый мундштук вставляется в рот и удерживается зубами и губами.

ДЫХАТЕЛЬНАЯ ТРУБКА, МАСКА, ЛАСТЫ

Дыхательная трубка обеспечивает дыхание при плавании, когда лицо пловца находится под водой. Передвигаясь с помощью ластов, он имеет возможность обозревать предметы, находящиеся в воде, через стекло маски. При необходимости пловец ныряет на время паузы между вдохом и выдохом.

Простейшая дыхательная трубка состоит из двух частей: алюминиевой, пластмассовой или резиновой (упругой) изогнутой трубки и загубника, т. е. эластичного мундштука, сочлененного с нижним концом трубки для удержания ее в зубах.

Обычно длина трубки не превышает 450 мм при внутреннем диаметре 15- 22 мм и имеет объем 100- 200 см3. Вес трубки колеблется от 80 до 300 г (рис. 17).

Рис. 17. Бесклапанная дыхательная трубка: 1 - трубка; 2 - передний щиток загубника; 3 - загубник; 4 - «закусы» для удержания загубника зубами; 5 - губы; 6 - зубы; 7 - язык

Устройство трубки настолько просто, что ее несложно сделать самому.

Простейшая трубка предпочитается опытными ныряльщиками, всем остальным и является основным спортивным типом дыхательных трубок.

Более сложными по конструкции являются дыхательые трубки с автоматическими клапанами шарикового или поплавкового типа, которые не дают воде поступать в трубку (рис. 18). Действие автоматических клапанов заключается в том, что легкий цилиндрический шарик, или поплавок, всплывает и закрывает доступ воде внутрь трубки. Такие трубки применяются новичками, которые еще не имеют навыка пользования более удобной простейшей трубкой.

Существуют дыхательные трубки в сочетании с маской. Принцип их устройства тот же, что и у трубок с автоматическим клапаном, но при пользовании вдох делается носом, так как рот находится за пределами маски. Такие трубки менее удобны, и для подводных кинолюбителей мы их не рекомендуем.

Значение дыхательных трубок в подводном спорте трудно переоценить. Кроме простоты и удобства пользования они дают возможность установить свой собственный режим дыхания при различных нагрузках, приобрести условный рефлекс в закрытии дыхательных путей при поступлении в трубку воды.

Дыхательная трубка обязательно должна быть за поясом и у аквалангиста. Она может не понадобиться при десяти, пятнадцати или даже двадцати погружениях, а при двадцать первом погружении дыхательная трубка спасет ему жизнь.

Под водой пловец с аквалангом чувствует себя спокойно и уверенно. Но, поднявшись на поверхность, он является не кем иным, как пловцом, нагруженным тяжелым снаряжением. Если он всплывает далеко от своей базы (шлюпки или берега), использовав весь запас воздуха в баллонах, и если к тому же на море есть легкое волнение, положение может оказаться угрожающим. В этом случае ныряльщик начинает быстро уставать, тем более, что из-за снаряжения он не так свободен в воде, как обычный пловец. Поэтому он вынужден вместо акваланга пользоваться дыхательной трубкой, которая в достаточной мере возвышается над водой. Тогда пловцу не грозит опасность захлебнуться, и он спокойно возвращается на свою базу, не опасаясь того, что выбьется из сил.

Поэтому одним из основных правил подводного плавания с аквалангом является обязательное наличие дыхательной трубки, независимо от того, собираетесь ли вы погрузиться на большую или малую глубину, близко или далеко от берега.

Второй весьма существенной принадлежностью пловца является маска (рис. 19). Она служит для защиты глаз от окружающей воды и этим самым обеспечивает пловцу способность видеть в прозрачной воде. Раздельное устройство средств дыхания и зрения является надежной гарантией безопасности. Если маска впадает или наполняется водой, пловец будет продолжать нормально дышать через мундштук. Он может или всплыть наверх, зажав нос (если маска спала или разбилось стекло, чего в практике пока не случалось), или, если маска на месте, но наполнилась водой, спокойно удалить воду.

Устройство маски просто: она состоит из смотрового овального или круглого стекла, резиновой основы, металлического стяжного ободка и затылочного ремешка, или наголовника, которым закрепляется в верхней части лица.

Обычная маска имеет окно из плоского небьющегося стекла, которое изменяет представление о расстоянии и увеличивает размер предметов. Это происходит из-за более высокого показателя преломления воды (1,33) по сравнению с воздухом. Поэтому под водой дно обычно кажется ближе, чем на самом деле. В действительности подобной увеличение предметов не имеет большого значения, так как вы перестаете замечать это после первой попытки плавать в маске.

Увеличение предметов ощущается только тогда, когда в поле зрения попадает какой-либо знакомый предмет (например, бутылка, банка).

Чтобы иметь нормальное изображение под водой, в ряде стран применяют специальную корректирующую маску с двумя окнами, в каждое из которых вставляют выпуклую и вогнутую линзы (рис. 20). Линзы устраняют искажение формы, расстояния и увеличивают поле зрения. Корректирующая маска дает возможность видеть предметы под водой в натуральную величину, но на воздухе она отдаляет и искажает предметы. Поэтому это искажение следует принимать во внимание при входе и выходе из воды.

Маска позволяет погружаться на любую глубину и плавать по поверхности. Этим объясняется ее универсальность и широкое распространение среди спортсменов. Маску, как и дыхательную трубку, легко изготовить самому.

Третьим необходимым для подводного плавания элементом являются ласты. Они служат для увеличения скорости плавания и маневренности под водой. Кроме того, ласты чрезвычайно экономят силы пловца.

В данное время известно несколько десятков разновидностей ластов, но все они имеют в принципе одно устройство и одно назначение. Однако степень эластичности ласков является основным критерием оценки их качества и позволяет все ласты разделить на три типа: эластичные, нормальные и жесткие.

Практикой установлено, что коэффициент полезного действия эластичных ласт значительно уступает нормальным и тем более жестким. Нормальные ласты хорошо применять при длительном плавании и на большие дистанции, так как при этом более выгодно расходуются силы пловца.

Жесткие ласты спортсмены предпочитают при плавании па короткие дистанции с максимальной скоростью, а также при необходимости увеличения маневренности.

В этом случае силы спортсмена наиболее полно расходуются в короткий срок.

Хорошо подобранные ласты облегчают пловцу маневрирование в воде, увеличивают скорость движения, освобождают руки для производства киносъемки.

АКВАЛАНГ

Самым замечательным качеством акваланга является то, что он позволяет человеку плавать под водой на различных глубинах и при любых положениях без какой-либо дополнительной регулировки. Аппарат автоматически регулирует количество подаваемого в легкие воздуха в зависимости от глубины погружения. Благодаря аквалангу человек под водой как бы приобретает вторые легкие, специально приспособленные для дыхания в воде, и не чувствует себя при этом чем-либо связанным.

Тело освобождается от необходимости находиться только в вертикальном положении, как это бывает на земле. По своему желанию человек может нырнуть вглубь или всплыть к поверхности.

Имея такое доступное для освоения и сравнительно безопасное снаряжение, можно говорить о широком использовании его при подводной киносъемке.

Особенностью этого аппарата является то, что он заполняется не кислородом, а сжатым воздухом. В акваланге используется открытая система дыхания: выдыхаемый человеком воздух, нигде не задерживаясь, выходит наружу (рис. 21).

Таким образом, в легкие человека все время поступает из баллонов свежий воздух. Использование сжатого воздуха совершенно исключает возможность возникновения кислородного голодания, отравления углекислотой или кислородного отравления. Преимуществом акваланга перед другими водолазными аппаратами является простота в устройстве и эксплуатации, а также готовность к немедленному действии? сразу же после открытия вентилей баллонов.

Как устроен акваланг?

Основными, частями его являются: легочный автомат, стальные баллоны для хранения сжатого до 150-200 атм воздуха, два гофрированных резиновых шланга, загубник и система ремней для крепления аппарата на теле.

Легочный автомат - главная и наиболее ответственная часть аппарата. Его задача заключается в том, чтобы понизить давление воздуха, находящегося в баллонах, до давления наружной, окружающей среды и подать его в легкие человека своевременно и в необходимом количестве. Легочный автомат приводится в действие легкими человека, благодаря чему его работа автоматически согласуется с ритмом дыхания: воздух подается в легкие только во время вдоха, а во время выдоха подача прекращается. Легочный автомат соединяется с баллонами и с загубником посредством двух гофрированных шлангов, один из которых используется при вдохе, а другой - при выдохе.

Наиболее распространенный отечественный акваланг- это «Подводник-1» (заводская марка АВМ-1), выпускаемый заводом «Респиратор» Мособлсовнархоза (рис. 22).

Рис. 22. Общий вид акваланга «Подводник-1»

В этом аппарате воздух, сжатый до 150 атм, хранится в двух баллонах, скрепленных в кассету двумя хомутами. Емкость каждого баллона 7 л. Таким образом, общий запас воздуха при полном давлении составляет около 2100 л.

К баллонам присоединяется двухступенчатый легочный автомат.

Аппарат крепится на спине ныряльщика с помощью комплекта ремней - двух плечевых, поясного и нижнего,которые при надевании соединяются друг с другом одной, легко отстегивающейся пряжкой. В комплект снаряжения к аппарату входит маска и грузовой пояс.

Грузовой пояс представляет собой ремень с легко отстегивающейся пряжкой, к которому прикрепляются свинцовые грузы. Количество груза может быть различно (в комплект входит 14 грузов весом по 0,5 кг каждый) и подбирается с таким расчетом, чтобы спортсмен находился в состоянии нейтральной (нулевой) плавучести или медленно погружался. Обычно грузы приходится использовать только при плавании в гидрокомбинезоне.

Вес «Подводника-1» с наполненными баллонами составляет 23,5 кг, а под водой - 3,5 кг, т. е. аппарат тянет пловца на дно. Чтобы избежать этого, к аппарату можно прикрепить кусок пенопласта, резиновую футбольную камеру или другой предмет легче воды. В модернизированном «Подводнике-1» (заводская марка АВМ-1М) этот недостаток ликвидирован, и для компенсации веса к баллонам придается пенопласт в заводском исполнении.

Допускаемая глубина погружения в акваланге составляет 40 м. Погружаться глубже* не рекомендуется во избежание возможного нарушения жизненных функций, известного под названием «азотное опьянение». По этой же причине не рекомендуется? погружаться несколько раз в день и расходовать в день более двух баллонов.

Известно, что количество расходуемого воздуха изменяется в зависимости от давления среды: по мере погружения на каждые 10 м оно увеличивается приблизительно на 1 атм. Поэтому продолжительность подводного плавания зависит от глубины погружения.

На поверхности или на глубине до 1 м средняя продолжительность пребывания под водой в акваланге «Подводник-1» практически составляет около 70 мин, на глубине 5 м - 50 мин, на 10 м - 30 мин, на 20 м - 20 мин и, наконец, на глубине 40 м - около 3-10 мин.

Эти нормы времени не следует понимать буквально, так как они находятся в зависимости от двух следующих факторов:
1) от количества поглощаемого при дыхании воздуха, которое неодинаково для различных людей; многие подводные пловцы после некоторой тренировки приучаются регулировать свое дыхание и проявлять при этом чудеса экономии, используя до конца каждый кубический сантиметр воздуха;

2) от количества мускульных движений во время подводного плавания; неподвижный или медленно двигающийся водолаз потребляет меньше воздуха, чем тот, кто активно ведет себя в воде или выполняет тяжелую работу.

Принципиальная схема акваланга «Подводник-1» показана на рис. 23. Она состоит из двух систем: высокого и низкого давления.

В систему высокого давления входят баллоны, соединительные воздухопроводы, указатель минимального давления 17 и манометр 16. Система низкого давления начинается от клапана легочного автомата 7 и заканчивается загубником, через который производится дыхание.

При вдохе через загубник в камере легочного автомата создается разрежение. Разность между наружным давлением и давлением в камере легочного автомата заставляет мембрану 1 прогнуться вниз. При этом мембрана поворачивает рычаг 2 по часовой стрелке относительно оси 5. Рычаг 2 поворачивает рычаг 4 относительно оси 5 против часовой стрелки. Рычаг 4 при движении давит ввернутым в него винтом 6 на шток клапана 7 с резиновой подушкой. Клапан 7 отходит от седла легочного автомата, и воздух, проходя из камеры редуктора в камеру Легочного автомата, дросселируется до наружного давления и по шлангу вдоха поступает в дыхательные органы человека.

После завершения вдоха разрежение в камере легочного автомата прекращается и мебрана 1 перестает давить на рычаги 2 и 4. Клапан 7 под усилием пружины 8 и давления воздуха под клапаном перекроет отверстие седла легочного автомата. Давление в подмембранной полости станет равным наружному давлению, и доступ воздуха из редуктора в легочный автомат прекратится.

Выдох осуществляется через шланг, который оканчивается лепестковым клапаном. Воздух, проходя через щели лепестка, устремляется в надмембранное пространство легочного автомата и далее, через отверстия в его крышке, выходит в воду, поднимаясь в виде пузырей на поверхность.

Одновременно с работой легочного автомата вступает в действие и редуктор.

Рис. 23. Схема акваланга «Подводник-1»

Через открытый вентиль сжатый воздух из баллонов поступает по системе трубопроводов высокого давления под клапан редуктора 9, поднимает его и следует в камеру редуктора. При этом давление в камере редуктора возрастает. Как только оно достигнет величины 5-7 атм (так называемое установочное давление), мембрана 14 прогибается вверх, увлекает за собой тягу и поворачивает связанный с ней рычаг 11 по часовой стрелке вокруг оси 12. При этом одно плечо сжимает пружину 10, а другое давит через толкатель 13 на клапан редуктора 9 и прижимает его к седлу, прекращая тем самым поступление воздуха в камеру редуктора.

Этот цикл повторяется в соответствии с ритмом дыхания.

В камере редуктора, а следовательно, и перед клапаном легочного автомата автоматически поддерживается избыточное по отношению к наружному давление воздуха в пределах 5-7 атм.

Для предотвращения увеличения давления воздуха в камере редуктора свыше установочного предусмотрен предохранительный клапан 25, который выпускает избыток давления наружу. Предохранительный клапан вступает в работу тогда, когда нарушено герметичное прилегание клапана редуктора 9 к седлу, что может случиться как в процессе эксплуатации, так и во время хранения аппарата.

Одновременно с поступлением сжатого воздуха под клапан редуктора 9 он поступает также к манометру 16 и указателю минимального давления 77, который служит ддя предупреждения аквалангиста о необходимости выхода на поверхность. Под водой имеется возможность контролировать давление воздуха в баллонах по манометру (в прозрачной воде) или прощупыванием штока указателя минимального давления (в мутной воде). Если давление воздуха в баллонах снизилось до 30 атм и шток 18 указателя под действием пружины займет выдвинутое положение с характерным щелчком, аквалангист обязан выйти на поверхность, так как воздуха в баллонах осталось на несколько минут действия аппарата. Для приведения в рабочее состояние указателя минимального давления 17 необходимо нажать до отказа на кнопку штока 18 и только после этого открыть вентили баллонов.

Кроме указанного способа для извещения аквалангиста о необходимости подъема на поверхность существуют звуковые указатели минимального давления. Такой указатель в виде свистка применен в акваланге «Украина» выпускаемом мастерскими горно-спасательного оборудования в г. Луганске. Этот аппарат также основан на принципе легочно-автоматического действия с открытой системой дыхания. Запас сжатого до 200 атм воздуха в акваланге «Украина» содержится в двух баллонах емкостью по 4л каждый и составляет, таким образом,1600 л.

Схема акваланга «Украина» показана на рис. 24. В одном блоке с легочным автоматом объединен указатель минимального давления. Работа его происходит следующим образом. При вдохе сжатый воздух из баллонов поступает в камеру легочного автомата и одновременно под диафрагму 1 указателя минимального давления. Пружина 2 находится в Сжатом положении, а шток 3 занимает максимальную высоту, удерживая соединительную трубку 4 на взводе.

Рис. 24. Схема акваланга «Украина»

По мере расходования воздуха давление в баллонах, а следовательно, и на диафрагму 1 уменьшается. При этом шток 3 под воздействием пружины 2 опускается вниз и при давлении в баллонах 35-40 атм освобождает трубку 4, которая соединяет выходное отверстие легочного автомата со свистком 5.

В таком положении каждый вдох аквалангиста будет сопровождаться звуковым сигналом - это значит, что пора выходить на поверхность.

ЗАРЯДКА АКВАЛАНГА ВОЗДУХОМ

Зарядка аппарата воздухом может производиться либо непосредственно от компрессора высокого давления (150- 200 атм), снабженного фильтром, либо от транспортных (40-литровых) баллонов, предварительно накачанных через фильтр. Поскольку для подводного спорта еще не создан специальный компрессор, в практике для зарядки баллонов акваланга используется полевая зарядная углекислотная станция (ПЗУС). Это сравнительно громоздкая компрессорная установка переносного типа с компрессором высокого давления АК-150 (рис. 25). Такой компрессорной установкой можно зарядить воздухом акваланг «Подводник-1» с двумя баллонами емкостью по 7 л каждый до 150 атм за 50-60 мин.

Транспортные баллоны целесообразно заряжать сжатым воздухом от компрессоров высокого давления большей производительности. Для этой цели могут использоваться компрессорные станции АКС-2 или АКС-8, которые на специальном двухосном прицепе буксируются грузовой автомашиной.

Зарядка баллонов акваланга воздухом от транспортных баллонов производится по схеме, изображенной на рис. 26. При этом обычно применяют три транспортных баллона с целью более полного использования содержащегося в них воздуха.

Транспортные баллоны, заряженные воздухом до 150 атму присоединяются с помощью спиральных трубок к кислородному насосу типа КН, который, в свою очередь, соединяется с фильтром, в данном случае ОКН-1.

После того как схема смонтирована и проверена, для зарядки нужно открыть вентили на баллонах аппарата, первом транспортном баллоне, звезде компрессора и выходной звезде фильтра. При этом воздух, находящийся в транспортном баллоне под давлением 150 атм, пройдя через компрессор, идет через змеевик-холодильник фильтра во влагоотделитель, затем в адсорбер и керамиковый фильтр. После керамикового фильтра воздух через выходную звезду поступает в наполняемые баллоны аппарата до выравнивания давления во всей системе. За наступлением этого момента нужно следить по манометру на звезде компрессора и звезде фильтра. Прекращение шипения перепускного воздуха также является признаком того, что давление в баллонах аппарата стало одинаковым с давлением в транспортных баллонах и будет ниже 150 атм. Повышение давления воздуха в баллонах акваланга до 150 атм производится кислородным компрессором типа КН или установкой ПЗУС.

Следует заметить, что с помощью компрессора типа КН можно повысить давление не более чем в два раза в сравнении с давлением, оставшимся в транспортном баллоне.

Если из первого транспортного баллона не удалось довести давление в акваланге до 150 атм, следует перейти на второй транспортный баллон, а затем и на третий. При этом транспортные баллоны с большим давлением используются в последнюю очередь. После того как давление в транспортных баллонах снизится настолько, что дальнейшую перекачку из них производить не имеет смысла, нужно заменить их на полные. К концу зарядки баллоны акваланга несколько нагреваются, но спустя некоторое время остывают, вследствие чего давление в них снижается примерно на 10%.

В последующем при надобности может быть произведена дозарядка баллонов аппарата до полного давления 150 атм.

Для очистки воздуха от механических примесей, воды и масла на компрессорной установке предусмотрен маслоотделитель. Он представляет собой стальной баллон со сливным-краном.

Принцип действия маслоотделителя заключается в следующем: воздух, входя в баллон маслоотделителя, изменяет свое направление, вследствие чего частицы масла -и другие частицы, содержащиеся в воздухе, оседают на дно баллона и по мере скопления удаляются через кран. Очищенный воздух выходит через противоположный штуцер.

Кроме такого фильтра нужен фильтр с активированным углем для очистки воздуха от посторонних газов.

Следует помнить, что баллоны акваланга должны заполняться абсолютно чистым воздухом, т. е. свободным от всяких примесей (окисей углерода, паров смазочных масел, продуктов их окисления, дурно пахнущих веществ и т.д.).

Наиболее опасным является содержание в воздухе угарного газа (окиси углерода), который в большом количестве находится в составе выхлопных газов двигателей, приводящих в движение компрессор. Содержание в воздухе даже незначительного количества угарного газа может явиться причиной отравления пловца. Поэтому на качество воздуха должно обращаться особо серьезное внимание.

Для очистки воздуха от примесей с успехом используется переносный фильтр ОКН-1, предназначенный для очистки и осушки от влаги кислорода (рис. 27).

Для этого глинозем (осушитель) в адсорбере фильтра заменяют обычным активированным углем, который применяется в противогазах. Установка ОКН-1 имеет габариты 480х X 500×240 мм и состоит из влагоотделителя, адсорбера, керамикового фильтра и выходной звезды.

Влагоотделить предназначен для освобождения воздуха от капельной влаги. Он работает на том же принципе, что и маслоотделитель ПЗУС.

Адсорбер служит для очистки воздуха от газов и представляет собой малолитражный баллон,4 заполненный активированным углем.

Керамиковый фильтр служит для очистки воздуха от пыли активированного угля. Корпус его изготовлен в виде стакана, в который вставляется керамиковый цилиндр.

Фильтр ОКН-1 надежно очищает воздух от вредных примесей, кроме угарного газа.

Некоторые спортсмены успешно пользуются и самодельным фильтром (рис. 28).

Рис. 28. Схема и размеры самодельного

фильтра: 1 - активированный уголь; 2 - адсорбер; 3 - сетка

ВСПОМОГАТЕЛЬНОЕ СНАРЯЖЕНИЕ

Ручной глубиномер требуется при погружениях на большую глубину или в тех случаях, когда место погружения совсем незнакомо. Очень важно, чтобы глубиномер имел деления свыше 40 м. Если деления кончаются на 40 м, то в данном случае неясно, погрузились ли вы на 40 м или значительно глубже.

Существуют два вида глубиномеров: механический и пневматический. Механический глубиномер по устройству похож на обычный манометр и основан на принципе давления воды в изогнутой трубке прибора, связанной с манометрической стрелкой.

Пневматический глубиномер основан на принципе упругости и несжимаемости воды. Вода, поступая в узкий канал (капилляр) глубиномера, сжимает находящийся в нем воздух пропорционально глубине погружения. Граница воздуха и воды хорошо выделяется на черном фоне шкалы и показывает глубину в метрах.

Часы необходимы пловцу, так как субъективные ощущения времени под водой отличаются от обычных - время под водой идет быстрее. Кроме того, часы помогают определить время пребывания под водой и время до подъема на поверхность. Кроме специально изготовляемых подводных часов для подводного плавания используют обыкновенные наручные часы, заключенные в герметичный корпус.

Нож не является орудием защиты, так как, по мнению ветеранов подводного спорта, ни одно морское существо не нападает на человека, но на всякий случай его необходимо иметь. Нож нужен, например, для того,-чтобы быстро обрезать запутавшийся сигнальный конец, трос или рыболовную сеть, в которую может угодить пловец, а также и для многих других непредвиденных случайностей под водой.

Нож может быть плавающим. Такой нож удобен для ныряльщика с маской, который в случае утери сможет его легко найти на поверхности воды. Но для пловца с аквалангом это совершенно невыгодно, так как при всплывании ножа на поверхность нужно последовать за ним и затем нырять снова. А для водолаза такие частые смены давления вредны.

Гидрокомбинезон служит для предохранения тела пловца от воздействия окружающей его водной среды, в основном, от низких температур. В южных морях в разгар лета кратковременно можно нырять без защитного костюма даже на 40 м.

Но уже на глубине 20 м холод переносится довольно трудно, особенно худыми людьми. И несмотря на то, что защитная одежда до известной степени стесняет движения спортсмена, она значительно удлиняет сезон пребывания под водой в южных водоемах и обеспечивает погружение в северных водоемах при температуре воды +б…+8°. Для этого под гидрокомбинезон обычно надевают комплект теплого (шерстяного) нательного белья, меховые носки, шерстяную шапочку и перчатки.

Основными требованиями к защитной одежде являются: надежная изоляция тела от охлаждения водой; свобода действий под водой рук, ног и тела; удобство в одевании и раздевании; отсутствие грубых швов, застежек, пуговиц и других деталей, которые могут вызвать потертости тела при движении под водой; малый вес и объем.

Спортсмен должен иметь теплозащитную одежду, строго соответствующую его росту. Нельзя надевать гидрокостюмы, стесняющие движения, или слишком просторные, так как в их складках будет задерживаться воздух, что затруднит уход в глубину.

Правильная подгонка костюма определяет успех погружения.

Известны костюмы, сделанные из губчатой резины и надеваемые на голое тело. Хотя они и не являются водонепроницаемыми, вода в костюм не попадает или попадает в небольшом количестве.

Некоторые костюмы состоят из двух предметов; другие имеют вид комбинезона с длинными или короткими рукавами и штанами с застежкой на молнии. Такие костюмы легко надевать самому, без посторонней помощи.

Хороши водонепроницаемые костюмы из тонкой резины (рис. 29), под которые надевают теплое белье. Костюм может состоять из рубахи и штанов, соединяющихся на талии, или представлять собой неразъемный комбинезон с эластичным воротом, через который приходится влезать в костюм. Такие непроницаемые костюмы являются очень хорошим защитным средством, но они чувствительны к давлению и на глубине могут неприятно сдавливать пловца.

СРЕДСТВА ПЕРЕДВИЖЕНИЯ ПОД ВОДОЙ

Подводный акваплан (подводная плоскость) представляет собой легкую доску шириной 60-70 см и длиной 20-25 см с рукояткой, за которую спортсмен держится, находясь в горизонтальном положении. Подводный акваплан буксируется катером (рис. 30).

Подводный акваплан является одновременно рулем глубины и направления. Начиная с минимальных скоростей движения катера и кончая 4-5 км/час, пловец при движении за аквапланом может развить в себе силу, ловкость и ориентировку под водой. Закрепив на акваплане киноаппарат и выведя ручку управления, подводный пловец сможет производить съемку наплывом.

Подводные сани служат для буксировки аквалангиста с киноаппаратом по дну, имеющему ровный рельеф. Во избежание резких сотрясений сани должны быть достаточно массивными.

Подводный велосипед (аквапед) служит для передвижения спортсмена под водой. Является удобным спортивным аппаратом и имеет плавучесть, близкую к нулю. Два гребных винта диаметром около 500 мм, вращающиеся в разные стороны, или один винт диаметром 700 мм приводится в движение вращением педалей. На рис. 31 приведен один из таких аппаратов.

Подводный скутер среди других средств передвижения под водой получил наибольшее распространение. По внешнему виду он напоминает небольшую торпеду с одним или двумя гребными винтами, приводимыми в движение электродвигателем. Источником питания служат аккумуляторные батареи. Гребные винты могут находиться как в кормовой, так и в носовой части скутера с соответственным изменением направления вращения. Пловец держится за раму в кормовой части и поворотом своего тела и в особенности ног с ластами придает скутеру нужное направление движения. Скутер может нести на себе киноаппаратуру, а также подводные осветители.

В этом смысле интересен подводный скутер конструкции кинооператора А. Ф. Леонтовича (рис. 32 и 33). Скутер имеет длину 235 см, диаметр 40 см и вес 150 кг. Его подводная скорость - от 2 до 6 км/час. Мощность электродвигателя 800 вт. Источником питания служит сдвоенный блок серебряно-цинковых аккумуляторов СЦ-45, что обеспечивает общую емкость 90 a-ч. Герметичность корпуса в месте выхода гребного вала обеспечивается сальниковыми уплотнениями. В конструкции использованы типовые шариковые подшипники. Переключатель скоростей имеет пять положений и выведен в виде рычага на общую ручку. Материал корпуса - сталь. Скутер имеет отрицательную плавучесть около 200-300г. Для обеспечения экстренного всплытия служит страховочный груз, который отделяется при помощи рукоятки.

На скутере можно закреплять одно из следующих оборудований: а) прожектор для поисковых работ или для подсветки при съемке киноаппаратом с другого скутера; б) кинокамеры «Конвас-автомат» с 60-м кассетами; в) контейнер с аккумуляторами и двумя осветительными лампами с выведением их включения на общую ручку управления. В носовой части скутера может укрепляться плоское зеркало для съемки «проездом».

За рубежом известны несколько модификаций скутера, называющегося по имени его конструктора (киноторпеда Ребикова — рис. 34), и ряд конструкций больших скутеров, способных нести на себе кроме кинооборудования несколько пловцов.

Подводный автомобиль (аквакеб) - сверхмалая спортивная подводная лодка с водонепроницаемым корпусом. Экипаж ее находится в подводном спортивном снаряжении. Подводный автомобиль позволяет перемещаться со скоростью до 3-5 км/час при педальном приводе идо 7 км/час с помощью электромотора. Все управление этого аппарата размещено на рулевом колесе. Необходимая устойчивость и плавучесть подводного автомобиля достигаются при помощи твердого балласта. От встречного сопротивления воды голова пловца защищается откидным плексигласовым щитком (рис. 35).

Плавучая база - так назвал другую конструкцию оператор Ф. А. Леонтович, которую он создал совместно с бригадой конструкторов, руководимой инженером Д. М. Брылиным.

По внешнему виду плавучая база напоминает сдвоенную лодку - катамаран (рис. 36) и состоит из двух обтекаемых алюминиевых понтонов, между которыми расположена грузовая площадка. Для обеспечения непотопляемости понтоны разделены на герметичные отсеки.

Размеры плавучей базы: длина 5 м, ширина 3 м, высота понтона 65 см, осадка 25 см. Общий вес базы 150 кг, грузоподъемность около 2 т. К площадке базы подвешивается мотор «Москва». Пладучая база имеет трап для спуска аквалангиста в’воду, а также подвесную подводную площадку, с которой производится съемка. Для подъема и опускания киноаппарата за борт на базе оборудована специальная подъемная стрела.

ОСНОВНЫЕ ПРАВИЛА ПЛАВАНИЯ ПОД ВОДОЙ

Возможности кинооператора под водой во многом определяются его снаряжением.

С дыхательной трубкой, в маске и ластах пловец может вести съемку вниз, передвигаясь по поверхности воды.

Кинооператор, снаряженный аквалангом, может долго находиться под водой и плавать в любом направлении. Снабдив себя для устойчивости грузами, он может передвигаться по грунту.

Как надевать снаряжение? Стекла маски слегка протрите изнутри. Затем сполосните маску в воде и наденьте. Ласты надо предварительно смочить, чтобы они легко надевались на ноги. Если вы облачаетесь в гидрокомбинезон, внутреннюю полость ласт нужно смочить мыльной водой. Мыльная вода поможет также и при натягивании на руки тугих резиновых манжет гидрокомбинезона.

Гидрокомбинезон надевайте не спеша, стараясь избежать образования морщин и полостей с воздухом.

Акваланг на спине следует закреплять плотно, без провиса, ремни должны быть хорошо подтянуты. Наличие нижнего (брассового) ремня во время плавания обязательно, так как он надежно удерживает аппарат от перекосов.

Спуск в воду. Для спуска в воду лучше всего иметь удобную портативную лестницу (трап), которую можно было бы использовать как с причала, так и с борта шлюпки. Однако часто приходится обходиться без лестницы.

В любом случае прыгать в воду небезопасно, так как при ударе о воду баллоны могут сместиться, и ныряльщик рискует получить удар легочным автоматом в затылок. Кроме того, во время резкого вхождения в воду может быть сдвинута с лица маска.

При спуске из открытой шлюпки, сядьте на борт спиной к воде, наклоните голову к согнутым коленям (т. е. согнитесь «калачиком») и плавно опрокиньтесь назад, придерживая руками маску. Этот быстрый и безопасный способ погружения проверен во многих подводных экспедициях. Погружаясь с причала или с отвесного берега, следует поступать иначе. Сядьте лицом к воде, свесьте ноги, а затем повернитесь кругом, перенесите свой вес на обе руки и как можно плавнее опускайтесь в воду.

Перед спуском в воду не забудьте взять в рот загубник. Многие новички забывают это делать. Если вы ушли в воду, забыв о загубнике, не пугайтесь. Оставаясь на поверхности, удалите воду из гофрированных трубок, энергично вдувая воздух в загубник.

Независимо от того, сколько пловцов будет сопровождать вас в воде, кто-то обязательно должен оставаться на берегу или в шлюпке в качестве страхующего. Он-то и должен передать вам в воду подводный киноаппарат или осветитель.

Аппаратуру берите только после того, как вы в воде убедитесь, что у вас все в порядке и акваланг работает нормально. Перед началом систематических погружений группой следует все акваланги распределить за каждым подводным пловцом с целью правильной регулировки, ухода и знания особенностей каждого аппарата.

Если киноаппарат имеет съемные плоскости - крылья и под водой придется двигаться с большой скоростью на буксире (за подводным аквапланом или буксировщиком, за рыболовным тралом и т. п.), то крылья следует заранее снять, так как при малейшем угле наклона киноаппарата они будут создавать большое гидродинамическое сопротивление, силой которого аппарат будет выворачивать из рук. Для работы на большой скорости (до 6 км/час) удобны киноаппараты, заключенные в обтекаемые сферические боксы, укрепленные на буксировщике до начала съемок.

Буксировка аквалангиста в обычном снаряжении со скоростью свыше 6 км/час не рекомендуется, так как возросшее сопротивление водной среды лишает возможности производить какое-либо управление подводной кинокамерой, вырывает загубник изо рта, сдавливает гофрированные дыхательные трубки или просто срывает пловца с акваплана или трала.

Передвижение под водой. Для передвижения под водой не обязательно быть хорошим пловцом. Маска, ласты и тем более акваланг дают необычайное ощущение безопасности в воде, и человек чувствует себя подобно рыбе. Чтобы передвигаться, достаточно медленного движения ногами стилем кроль.

Плавая с маской на поверхности и дыша через трубку, следует внимательно наблюдать за происходящим в воде. Как только в поле зрения появится что-нибудь интересное, нужно набрать скорость, одновременно быстро и очень глубоко дыша, чтобы произошло насыщение крови кислородом. Потом во время одного из выдохов, который не следует делать до конца (необходимо оставить немного воздуха в легких, чтобы при всплытии выдуть воду, попавшую в трубку), нужно пикировать головой вниз, продолжая работать ногами. При этом нужно стараться делать мягкие движения и как можно меньше колебать воду.

Тренировками можно довести глубину ныряния до 7-8 м. Опускаться глубже без акваланга не следует.

При плавании с аквалангом движения также должны быть медленными. Не забывайте, что вы вдыхаете и выдыхаете через одно и то же маленькое отверстие в загубнике. Поэтому надо избегать резкого перехода к учащенному дыханию, ибо оно может привести к удушью. Более того, следует тренироваться - оставаться под водой неподвижным в течение возможно больших промежутков времени, что необходимо для улучшения условий киносъемки.

Желательно, чтобы киносъемочная камера в воде имела нулевую плавучесть. В этом случае управлять ею будет довольно легко. Однако небольшие отклонения в ту или другую сторону большого значения не имеют.

Для съемок под водой лучше всего искать места с каменистым дном, так как они наиболее выразительны и вода в них более прозрачна.

Когда вы с киноаппаратом обследуете затонувшее судно или тесную подводную пещеру, постоянно помните о наличии гофрированных дыхательных трубок, которые находятся у вас за головой. При резком соприкосновении с острыми выступающими деталями их можно повредить.

Прежде чем войти в какой-либо узкий проход, его надо тщательно обследовать. Такие обследования надо делать, по крайней мере, вдвоем.

Выход из воды. Вначале передайте на борт шлюпки или в руки стоящего на трапе товарища кинокамеру. Затем, предварительно вынув из-за пояса и передав дыхательную трубку, снимайте акваланг, удерживая загубник во рту. Ласты снимать не надо, они облегчают выход из воды. Маска снимается последней.

 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!