Обратные функции примеры решения. Взаимно обратные функции, их графики. Основные свойства взаимно обратных функций

Допустим, что у нас есть некая функция y = f (x) , которая является строго монотонной (убывающей или возрастающей) и непрерывной на области определения x ∈ a ; b ; область ее значений y ∈ c ; d , а на интервале c ; d при этом у нас будет определена функция x = g (y) с областью значений a ; b . Вторая функция также будет непрерывной и строго монотонной. По отношению к y = f (x) она будет обратной функцией. То есть мы можем говорить об обратной функции x = g (y) тогда, когда y = f (x) на заданном интервале будет либо убывать, либо возрастать.

Две этих функции, f и g , будут взаимно обратными.

Для чего вообще нам нужно понятие обратных функций?

Это нужно нам для решения уравнений y = f (x) , которые записываются как раз с помощью этих выражений.

Допустим, нам нужно найти решение уравнения cos (x) = 1 3 . Его решениями будут все точки: x = ± a rс c o s 1 3 + 2 π · k , k ∈ Z

Обратными по отношению друг к другу будут, например, функции арккосинуса и косинуса.

Разберем несколько задач на нахождение функций, обратных заданным.

Пример 1

Условие: какая функция будет обратной для y = 3 x + 2 ?

Решение

Область определений и область значений функции, заданной в условии, – это множество всех действительных чисел. Попробуем решить данное уравнение через x , то есть выразив x через y .

Мы получим x = 1 3 y - 2 3 . Это и есть нужная нам обратная функция, но y здесь будет аргументом, а x - функцией. Переставим их, чтобы получить более привычную форму записи:

Ответ: функция y = 1 3 x - 2 3 будет обратной для y = 3 x + 2 .

Обе взаимно обратные функции можно отобразить на графике следующим образом:

Мы видим симметричность обоих графиков относительно y = x . Эта прямая является биссектрисой первого и третьего квадрантов. Получилось доказательство одного из свойств взаимно обратных функций, о котором мы поговорим далее.

Возьмем пример, в котором нужно найти логарифмическую функцию, обратную заданной показательной.

Пример 2

Условие: определите, какая функция будет обратной для y = 2 x .

Решение

Для заданной функции областью определения являются все действительные числа. Область значений лежит в интервале 0 ; + ∞ . Теперь нам нужно выразить x через y , то есть решить указанное уравнение через x . Мы получаем x = log 2 y . Переставим переменные и получим y = log 2 x .

В итоге у нас вышли показательная и логарифмическая функции, которые будут взаимно обратными друг другу на всей области определения.

Ответ: y = log 2 x .

На графике обе функции будут выглядеть так:

Основные свойства взаимно обратных функций

В этом пункте мы перечислим основные свойства функций y = f (x) и x = g (y) , являющихся взаимно обратными.

Определение 1

  1. Первое свойство мы уже вывели ранее: y = f (g (y)) и x = g (f (x)) .
  2. Второе свойство вытекает из первого: область определения y = f (x) будет совпадать с областью значений обратной функции x = g (y) , и наоборот.
  3. Графики функций, являющихся обратными, будут симметричными относительно y = x .
  4. Если y = f (x) является возрастающей, то и x = g (y) будет возрастать, а если y = f (x) убывает, то убывает и x = g (y) .

Советуем внимательно отнестись к понятиям области определения и области значения функций и никогда их не путать. Допустим, что у нас есть две взаимно обратные функции y = f (x) = a x и x = g (y) = log a y . Согласно первому свойству, y = f (g (y)) = a log a y . Данное равенство будет верным только в случае положительных значений y , а для отрицательных логарифм не определен, поэтому не спешите записывать, что a log a y = y . Обязательно проверьте и добавьте, что это верно только при положительном y .

А вот равенство x = f (g (x)) = log a a x = x будет верным при любых действительных значениях x .

Не забывайте про этот момент, особенно если приходится работать с тригонометрическими и обратными тригонометрическими функциями. Так, a r c sin sin 7 π 3 ≠ 7 π 3 , потому что область значений арксинуса - π 2 ; π 2 и 7 π 3 в нее не входит. Верной будет запись

a r c sin sin 7 π 3 = a r c sin sin 2 π + π 3 = = п о ф о р м у л е п р и в и д е н и я = a r c sin sin π 3 = π 3

А вот sin a r c sin 1 3 = 1 3 – верное равенство, т.е. sin (a r c sin x) = x при x ∈ - 1 ; 1 и a r c sin (sin x) = x при x ∈ - π 2 ; π 2 . Всегда будьте внимательны с областью значений и областью определений обратных функций!

  • Основные взаимно обратные функции: степенные

Если у нас есть степенная функция y = x a , то при x > 0 степенная функция x = y 1 a также будет обратной ей. Заменим буквы и получим соответственно y = x a и x = y 1 a .

На графике они будут выглядеть следующим образом (случаи с положительным и отрицательным коэффициентом a):

  • Основные взаимно обратные функции: показательные и логарифмические

Возьмем a,которое будет положительным числом, не равным 1 .

Графики для функций с a > 1 и a < 1 будут выглядеть так:

  • Основные взаимно обратные функции: тригонометрические и обратные тригонометрические

Если нам нужно построить график главной ветви синуса и арксинуса, он будет выглядеть следующим образом (показан выделенной светлой областью).

Соответственные выражения, которые обращаются друг в друга. Чтобы разобраться в том, что это означает, стоит рассмотреть конкретный пример. Допустим, имеем y = cos(x). Если взять от аргумента косинус, то можно найти значение y. Очевидно, для этого необходимо иметь икс. Но что если изначально дан игрек? Именно тут дело доходит до сути вопроса. Для решения задачи требуется использование обратной функции. В нашем случае это арккосинус.

После всех преобразований получим: x = arccos(y).

То есть, чтобы найти функцию, обратную данной, достаточно просто выразить из нее аргумент. Но это работает только при условии, если полученный результат будет иметь единственное значение (об этом дальше).

В общем виде можно записать этот факт так: f(x) = y, g(y) = x.

Определение

Пусть f - функция, областью определения которой является множество X, а областью значений - множество Y. Тогда, если существует g, чьи области выполняют противоположные задачи, то f является обратимой.

Кроме того, в таком случае g - единственна, что означает, что существует ровно одна функция, удовлетворяющая этому свойству (не более, не менее). Тогда ее называют обратной функцией, и на письме обозначают так: g(x) = f -1 (x).

Другими словами, их можно рассматривать как двоичное отношение. Обратимость имеет место быть только тогда, когда одному элементу множества соответствует одно значение из другого.

Не всегда существует обратная функция. Для этого каждый элемент y є Y должен соответствовать не более чем одному x є X. Тогда f называется взаимно-однозначной или инъекцией. Если f -1 принадлежит Y, то каждый элемент этого множества должен соответствовать некоторому x ∈ X. Функции с таким свойством называются сюръекциями. Оно выполняется по определению, если Y - изображение f, но это не всегда так. Чтобы быть обратной, функция должна быть как инъекцией, так и сюръекцией. Такие выражения называются биекциями.

Пример: квадратные и корневые функции

Функция определена на

Е(у) = [-π/2;π/2]

у (-х) = arcsin(-х) = - arcsin х – функция нечетная, график симметричен относительно точки О(0;0).

arcsin х = 0 при х = 0.

arcsin х > 0 при х є (0;1]

arcsin х < 0 при х є [-1;0)

    у = arcsin х возрастает при любом х є [-1;1]

1 ≤ х 1 < х 2 ≤ 1 <=> arcsin х 1 < arcsin х 2 – функция возрастающая.

Арккосинус

Функция косинус убывает на отрезке и принимает все значения от -1 до 1. Поэтому для любого числа а, такого, что |а|1, на отрезке существует единственный корень в уравнении cosx=a. Это число в называют арккосинусом числа а и обозначают arcos а.

Определение . Арккосинусом числа а, где -1 а 1, называется такое число из отрезка , косинус которого равен а.

Свойства.

  1. Е(у) =

    у(-х) = arccos(-х) = π - arccos х – функция не является ни четной, ни нечетной.

    arccos х = 0 при х = 1

    arccos х > 0 при х є [-1;1)

arccos х < 0 – нет решений

    у = arccos х убывает при любом х є [-1;1]

1 ≤ х 1 < х 2 ≤ 1 <=> arcsin х 1 ≥ arcsin х 2 – убывающая.

Арктангенс

Функция тангенс возрастает на отрезке -
, следовательно, по теореме о корне уравнение tgx=a, где а - любое действительное число, имеет единственный корень х на интервале -. Этот корень называют арктангенсом числа а и обозначают arctga.

Определение. Арктангенсом числа a R называется такое число х , тангенс которого равен а.

Свойства.

    Е(у) = (-π/2;π/2)

    у(-х) = у = arctg(-х) = - arctg х – функция является нечетной, график симметричен относительно точки О(0;0).

    arctg х = 0 при х = 0

    Функция возрастает при любом х є R

-∞ < х 1 < х 2 < +∞ <=> arctg х 1 < arctg х 2

Арккотангенс

Функция котангенс на интервале (0;) убывает и принимает все значения из R. Поэтому для любого числа а в интервале (0;) существует единственный корень уравнения ctg х = а. Это число а называют арккотангенсом числа а и обозначают arcctg а.

Определение. Арккотангенсом числа а, где а R, называется такое число из интервала (0;), котангенс которого равен а.

Свойства.

    Е(у) = (0;π)

    у(-х) = arcctg(-х) = π - arcctg х – функция не является ни четной, ни нечетной.

    arcctg х = 0 – не существует.

    Функция у = arcctg х убывает при любом х є R

-∞ < х 1 < х 2 < + ∞ <=> arcctg х 1 > arcctg х 2

    Функция непрерывна при любом х є R.

2.3 Тождественные преобразования выражений, содержащих обратные тригонометрические функции

Пример 1 . Упростить выражение:

а)
где

Решение. Положим
. Тогда
и
Чтобы найти
, воспользуемся соотношением
Получаем
Но . На этом отрезке косинус принимает только положительные значения. Таким образом,
, то есть
где
.

б)

Решение.

в)

Решение. Положим
. Тогда
и
Найдем сначала , для чего воспользуемся формулой
, откуда
Так как и на этом интервале косинус принимает только положительные значения, то
.

Определение обратной функции.

Пусть функция строго монотонная (возрастающая или убывающая) и непрерывная на области определения , область значений этой функции , тогда на интервале определена непрерывная строго монотонная функция с областью значений , которая является обратной для .

Другими словами, об обратной функции для функции на конкретном промежутке имеет смысл говорить, если на этом интервале либо возрастает, либо убывает.

Функции f и g называют взаимно обратными .

Зачем вообще рассматривать понятие обратных функций?

Это вызвано задачей решения уравнений . Решения как раз и записываются через обратные функции.

Примеры нахождения взаимнообратных функций.

Например, требуется решить уравнение .

Решениями являются точки .

Функции косинус и арккосинус как раз являются обратными на области определения.

Рассмотрим несколько примеров нахождения обратных функций .

Начнем с линейных взаимнообратных функций.

Пример.

Решение.

Областью определения и областью значений этой функции является все множество действительных чисел. Выразим x через y (другими словами, решим уравнение относительно x ).

Это и есть обратная функция, правда здесь y – аргумент, а x – функция этого аргумента. Чтобы не нарушать привычки в обозначениях (это не имеет принципиального значения), переставив буквы x и y , будем писать .

Таким образом, и - взаимно обратные функции.

Приведем графическую иллюстрацию взаимно обратных линейных функций.

Очевидно, что графики симметричны относительно прямой y=x (биссектрисы первого и третьего квадрантов). Это одно из свойств взаимно обратных функций, о которых речь пойдет ниже.

Теперь рассмотрим пример нахождения логарифмической функции, обратной к заданной показательной функции.

Пример.

Найти функцию обратную для .

Решение.

Областью определения этой функции является все множество действительных чисел, областью значений является интервал . Выразим x через y (другими словами, решим уравнение относительно x ).

Это и есть обратная функция. Переставив буквы x и y , имеем .

Таким образом, и - показательная и логарифмическая функции есть взаимно обратные функции на области определения.

График взаимно обратных показательной и логарифмической функций.

Свойства взаимно обратных функций.

Перечислим свойства взаимно обратных функций и .

Замечание по свойству 1) .

Например: и - взаимно обратные функции. По первому свойству имеем . Это равенство верно только для положительных y , для отрицательных y логарифм не определен. Так что не спешите с записями вида , а если уж так написали, то следует добавить фразу «при положительных y ».

Равенство в свою очередь верно для любых действительных x .

Надеемся, Вы уловили этот тонкий момент.

Особенно аккуратными надо быть с тригонометрическими и обратными тригонометрическими функциями.

К примеру, , так как область значений арксинуса , а в нее не попадает.

Правильно будет

В свою очередь есть верное равенство.

То есть при и при .

Еще раз подчеркнем: БУДЬТЕ ВНИМАТЕЛЬНЫ С ОБЛАСТЬЮ ОПРЕДЕЛЕНИЯ И ОБЛАСТЬЮ ЗНАЧЕНИЙ!

Графики основных элементарных взаимно обратных функций.

Если Вам потребуются обратные функции для ветвей тригонометрических функций, отличных от главных, то соответствующую обратную тригонометрическую функцию нужно будет сдвинуть вдоль оси ординат на необходимое количество периодов.

Например, если Вам потребуется обратная функция для ветви тангенса на промежутке (эта ветвь получается из главной ветви сдвигом на величину вдоль оси ох ), то ей будет являться ветвь арктангенса, сдвинутая вдоль оси oy на .

Пока на этом закончим с обратными функциями.

Список литературы.

  • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват учреждений.

Пусть множества $X$ и $Y$ включены в множество действительных чисел. Введем понятие обратимой функции .

Определение 1

Функция $f:X\to Y$ отображающая множество $X$ в множество $Y$ называется обратимой, если для любых элементов $x_1,x_2\in X$ из того что $x_1\ne x_2$ следует, что $f(x_1)\ne f(x_2)$.

Теперь мы можем ввести понятие обратной функции.

Определение 2

Пусть функция $f:X\to Y$ отображающая множество $X$ в множество $Y$ обратима. Тогда функция $f^{-1}:Y\to X$ отображающая множество $Y$ в множество $X$ определяемая условием $f^{-1}\left(y\right)=x$ называется обратной для $f(x)$.

Сформулируем теорему:

Теорема 1

Пусть функция $y=f(x)$ определена, монотонно возрастает (убывает) и непрерывна в некотором промежутке $X$. Тогда в соответствующем промежутке $Y$ значений этой функции у нее существует обратная функция, которая также монотонно возрастает (убывает) и непрерывна на промежутке $Y$.

Введем теперь, непосредственно, понятие взаимно обратных функций.

Определение 3

В рамках определения 2, функции $f(x)$ и $f^{-1}\left(y\right)$ называются взаимно обратными функциями.

Свойства взаимно обратных функций

Пусть функции $y=f(x)$ и $x=g(y)$ взаимно обратные, тогда

    $y=f(g\left(y\right))$ и $x=g(f(x))$

    Область определения функции $y=f(x)$ равна области значения функции$\ x=g(y)$. А область определения функции $x=g(y)$ равна области значения функции$\ y=f(x)$.

    Графики функций $y=f(x)$ и $x=g(y)$ симметричны относительно прямой $y=x$.

    Если одна из функций возрастает (убывает), то и другая функция возрастает (убывает).

Нахождение обратной функции

    Решается уравнение $y=f(x)$ относительно переменной $x$.

    Из полученных корней находят те, которые принадлежат промежутку $X$.

    Найденные $x$ ставят в соответствия числу $y$.

Пример 1

Найти обратную функцию, для функции $y=x^2$ на промежутке $X=[-1,0]$

Так как эта функция убывает и непрерывна на промежутке $X$, то на промежутке $Y=$, которая также убывает и непрерывна на этом промежутке (теорема 1).

Вычислим $x$:

\ \

Выбираем подходящие $x$:

Ответ: обратная функция $y=-\sqrt{x}$.

Задачи на нахождение обратных функций

В этой части рассмотрим обратные функции для некоторых элементарных функций. Задачи будем решать по схеме, данной выше.

Пример 2

Найти обратную функцию для функции $y=x+4$

    Найдем $x$ из уравнения $y=x+4$:

Пример 3

Найти обратную функцию для функции $y=x^3$

Решение.

Так как функция возрастает и непрерывна на всей области определения, то, по теореме 1, она имеет на ней обратную непрерывную и возрастающую функцию.

    Найдем $x$ из уравнения $y=x^3$:

    Находим подходящие значения $x$

    Значение в нашем случае подходит (так как область определения -- все числа)

    Переопределим переменные, получим, что обратная функция имеет вид

Пример 4

Найти обратную функцию для функции $y=cosx$ на промежутке $$

Решение.

Рассмотрим на множестве $X=\left$ функцию $y=cosx$. Она непрерывна и убывает на множестве $X$ и отображает множество $X=\left$ на множество $Y=[-1,1]$, поэтому по теореме о существовании обратной непрерывной монотонной функции у функции $y=cosx$ в множестве $Y$ существует обратная функция, которая также непрерывна и возрастает в множестве $Y=[-1,1]$ и отображает множество $[-1,1]$ на множество $\left$.

    Найдем $x$ из уравнения $y=cosx$:

    Находим подходящие значения $x$

    Переопределим переменные, получим, что обратная функция имеет вид

Пример 5

Найти обратную функцию для функции $y=tgx$ на промежутке $\left(-\frac{\pi }{2},\frac{\pi }{2}\right)$.

Решение.

Рассмотрим на множестве $X=\left(-\frac{\pi }{2},\frac{\pi }{2}\right)$ функцию $y=tgx$. Она непрерывна и возрастает на множестве $X$ и отображает множество $X=\left(-\frac{\pi }{2},\frac{\pi }{2}\right)$ на множество $Y=R$, поэтому по теореме о существовании обратной непрерывной монотонной функции у функции $y=tgx$ в множестве $Y$ существует обратная функция, которая также непрерывна и возрастает в множестве $Y=R$ и отображает множество $R$ на множество $\left(-\frac{\pi }{2},\frac{\pi }{2}\right)$

    Найдем $x$ из уравнения $y=tgx$:

    Находим подходящие значения $x$

    Переопределим переменные, получим, что обратная функция имеет вид

 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!