Suma logaritmilor la aceeași bază. Expresii logaritmice. exemple

Sunt date principalele proprietăți ale logaritmului natural, graficul, domeniul de definiție, mulțimea de valori, formulele de bază, derivata, integrala, expansiunea într-o serie de puteri și reprezentarea funcției ln x prin intermediul numerelor complexe.

Definiție

logaritmul natural este funcția y = ln x, invers exponentului, x \u003d e y , și care este logaritmul la baza numărului e: ln x = log e x.

Logaritmul natural este utilizat pe scară largă în matematică deoarece derivata sa are cea mai simplă formă: (ln x)′ = 1/ x.

Bazat definiții, baza logaritmului natural este numărul e:
e ≅ 2,718281828459045...;
.

Graficul funcției y = ln x.

Graficul logaritmului natural (funcțiile y = ln x) se obţine din graficul exponentului prin reflexie în oglindă în jurul dreptei y = x .

Logaritmul natural este definit pentru valorile pozitive ale lui x. Ea crește monoton pe domeniul său de definire.

Ca x → 0 limita logaritmului natural este minus infinitul ( - ∞ ).

Ca x → + ∞, limita logaritmului natural este plus infinitul ( + ∞ ). Pentru x mare, logaritmul crește destul de lent. Orice functie de putere x a cu exponent pozitiv a crește mai repede decât logaritmul.

Proprietățile logaritmului natural

Domeniu de definire, set de valori, extrema, crestere, scadere

Logaritmul natural este o funcție crescătoare monoton, deci nu are extreme. Principalele proprietăți ale logaritmului natural sunt prezentate în tabel.

ln x valori

log 1 = 0

Formule de bază pentru logaritmi naturali

Formule care rezultă din definiția funcției inverse:

Principala proprietate a logaritmilor și consecințele acesteia

Formula de înlocuire a bazei

Orice logaritm poate fi exprimat în termeni de logaritmi naturali folosind formula de schimbare a bazei:

Demonstrațiile acestor formule sunt prezentate în secțiunea „Logaritm”.

Funcție inversă

Reciproca logaritmului natural este exponentul.

Daca atunci

Daca atunci .

Derivată ln x

Derivată a logaritmului natural:
.
Derivată a logaritmului natural al modulo x:
.
Derivată de ordinul al n-lea:
.
Derivarea formulelor > > >

Integral

Integrala se calculează prin integrare pe părți:
.
Asa de,

Expresii în termeni de numere complexe

Considerăm o funcție a unei variabile complexe z:
.
Să exprimăm variabila complexă z prin modul r si argument φ :
.
Folosind proprietățile logaritmului, avem:
.
Sau
.
Argumentul φ nu este definit în mod unic. Dacă punem
, unde n este un număr întreg,
atunci va fi același număr pentru n diferit.

Prin urmare, logaritmul natural, în funcție de o variabilă complexă, nu este o funcție cu o singură valoare.

Extinderea seriei de putere

Pentru , expansiunea are loc:

Referinte:
ÎN. Bronstein, K.A. Semendyaev, Manual de matematică pentru ingineri și studenți ai instituțiilor de învățământ superior, Lan, 2009.

După cum știți, atunci când înmulțiți expresii cu puteri, exponenții lor se adună întotdeauna (a b * a c = a b + c). Această lege matematică a fost derivată de Arhimede, iar mai târziu, în secolul al VIII-lea, matematicianul Virasen a creat un tabel de indicatori întregi. Ei au fost cei care au servit pentru descoperirea ulterioară a logaritmilor. Exemple de utilizare a acestei funcții pot fi găsite aproape peste tot acolo unde este necesar să se simplifice înmulțirea greoaie la adunare simplă. Dacă petreceți 10 minute citind acest articol, vă vom explica ce sunt logaritmii și cum să lucrați cu ei. Limbaj simplu și accesibil.

Definiție în matematică

Logaritmul este o expresie de următoarea formă: log a b=c, adică logaritmul oricărui număr nenegativ (adică orice pozitiv) „b” prin baza sa „a” este considerat puterea lui „c” , la care trebuie ridicată baza „a”, pentru ca în final să capete valoarea „b”. Să analizăm logaritmul folosind exemple, să presupunem că există o expresie log 2 8. Cum să găsim răspunsul? Este foarte simplu, trebuie să găsești un astfel de grad încât de la 2 la gradul necesar să obții 8. După ce ai făcut niște calcule în minte, obținem numărul 3! Și pe bună dreptate, pentru că 2 la puterea lui 3 dă numărul 8 în răspuns.

Varietăți de logaritmi

Pentru mulți elevi și studenți, acest subiect pare complicat și de neînțeles, dar, de fapt, logaritmii nu sunt atât de înfricoșători, principalul lucru este să le înțelegeți sensul general și să vă amintiți proprietățile și unele reguli. Se află trei anumite tipuri expresii logaritmice:

  1. Logaritmul natural ln a, unde baza este numărul Euler (e = 2,7).
  2. Decimală a, unde baza este 10.
  3. Logaritmul oricărui număr b la baza a>1.

Fiecare dintre ele este rezolvată într-un mod standard, incluzând simplificarea, reducerea și reducerea ulterioară la un logaritm folosind teoreme logaritmice. Pentru obtinerea valori corecte logaritmi, ar trebui să vă amintiți proprietățile lor și succesiunea acțiunilor în deciziile lor.

Reguli și unele restricții

În matematică, există mai multe reguli-limitări care sunt acceptate ca axiomă, adică nu sunt supuse discuției și sunt adevărate. De exemplu, este imposibil să împărțiți numerele la zero și, de asemenea, este imposibil să extrageți rădăcina unui grad par din numerele negative. Logaritmii au, de asemenea, propriile reguli, după care puteți învăța cu ușurință cum să lucrați chiar și cu expresii logaritmice lungi și încăpătoare:

  • baza „a” trebuie să fie întotdeauna mai mare decât zero și, în același timp, să nu fie egală cu 1, altfel expresia își va pierde sensul, deoarece „1” și „0” în orice grad sunt întotdeauna egale cu valorile lor;
  • dacă a > 0, atunci a b > 0, se dovedește că „c” trebuie să fie mai mare decât zero.

Cum se rezolvă logaritmii?

De exemplu, având în vedere sarcina de a găsi răspunsul la ecuația 10 x \u003d 100. Este foarte ușor, trebuie să alegeți o astfel de putere prin ridicarea numărului zece la care obținem 100. Acesta, desigur, este 10 2 \u003d 100.

Acum să reprezentăm această expresie ca una logaritmică. Obținem log 10 100 = 2. La rezolvarea logaritmilor, toate acțiunile converg practic către găsirea gradului în care trebuie introdusă baza logaritmului pentru a obține un număr dat.

Pentru a determina cu exactitate valoarea unui grad necunoscut, trebuie să înveți cum să lucrezi cu un tabel de grade. Arata cam asa:

După cum puteți vedea, unii exponenți pot fi ghiciți intuitiv dacă aveți o mentalitate tehnică și cunoștințe despre tabla înmulțirii. Cu toate acestea, pentru valori mari ai nevoie de un tabel de grade. Poate fi folosit chiar și de cei care nu înțeleg absolut nimic în subiecte matematice complexe. Coloana din stânga conține numere (baza a), rândul de sus de numere este valoarea puterii c, la care se ridică numărul a. La intersecția din celule, se determină valorile numerelor, care sunt răspunsul (a c =b). Să luăm, de exemplu, prima celulă cu numărul 10 și să o pătratăm, obținem valoarea 100, care este indicată la intersecția celor două celule ale noastre. Totul este atât de simplu și ușor încât până și cel mai adevărat umanist va înțelege!

Ecuații și inegalități

Se pare că, în anumite condiții, exponentul este logaritmul. Prin urmare, orice expresii numerice matematice pot fi scrise ca o ecuație logaritmică. De exemplu, 3 4 =81 poate fi scris ca logaritmul lui 81 la baza 3, care este patru (log 3 81 = 4). Pentru puteri negative regulile sunt aceleași: 2 -5 \u003d 1/32 scriem sub forma unui logaritm, obținem log 2 (1/32) \u003d -5. Una dintre cele mai fascinante secțiuni ale matematicii este subiectul „logaritmilor”. Vom lua în considerare exemple și soluții de ecuații puțin mai jos, imediat după studierea proprietăților acestora. Acum să ne uităm la cum arată inegalitățile și cum să le distingem de ecuații.

Se dă o expresie de următoarea formă: log 2 (x-1) > 3 - este o inegalitate logaritmică, deoarece valoarea necunoscută „x” se află sub semnul logaritmului. Și, de asemenea, în expresie sunt comparate două mărimi: logaritmul numărului dorit în baza doi este mai mare decât numărul trei.

Cea mai importantă diferență dintre ecuațiile logaritmice și inegalități este că ecuațiile cu logaritmi (de exemplu, logaritmul lui 2 x = √9) implică una sau mai multe valori numerice specifice în răspuns, în timp ce la rezolvarea inegalității, atât domeniul de valorile acceptabile și punctele care depășesc această funcție. În consecință, răspunsul nu este un simplu set de numere individuale, ca în răspunsul ecuației, ci o serie continuă sau un set de numere.

Teoreme de bază despre logaritmi

La rezolvarea sarcinilor primitive privind găsirea valorilor logaritmului, este posibil să nu fie cunoscute proprietățile acestuia. Cu toate acestea, când vine vorba de ecuații sau inegalități logaritmice, în primul rând, este necesar să înțelegem clar și să aplici în practică toate proprietățile de bază ale logaritmilor. Ne vom familiariza cu exemple de ecuații mai târziu, să analizăm mai întâi fiecare proprietate mai detaliat.

  1. Identitatea de bază arată astfel: a logaB =B. Se aplică numai dacă a este mai mare decât 0, nu este egal cu unu și B este mai mare decât zero.
  2. Logaritmul produsului poate fi reprezentat în următoarea formulă: log d (s 1 *s 2) = log d s 1 + log d s 2. În plus, condiție prealabilă este: d, s 1 și s 2 > 0; a≠1. Puteți da o demonstrație pentru această formulă de logaritmi, cu exemple și o soluție. Fie log a s 1 = f 1 și log a s 2 = f 2 , apoi a f1 = s 1 , a f2 = s 2. Obținem că s 1 *s 2 = a f1 *a f2 = a f1+f2 (proprietăți de grade) ), și mai departe prin definiție: log a (s 1 *s 2)= f 1 + f 2 = log a s1 + log a s 2, ceea ce urma să fie demonstrat.
  3. Logaritmul coeficientului arată astfel: log a (s 1 / s 2) = log a s 1 - log a s 2.
  4. Teorema sub forma unei formule ia următoarea formă: log a q b n = n/q log a b.

Această formulă se numește „proprietatea gradului logaritmului”. Seamănă cu proprietățile gradelor obișnuite și nu este surprinzător, deoarece toată matematica se bazează pe postulate obișnuite. Să ne uităm la dovada.

Să log a b \u003d t, se dovedește a t \u003d b. Dacă ridici ambele părți la puterea m: a tn = b n ;

dar deoarece a tn = (a q) nt/q = b n , prin urmare log a q b n = (n*t)/t, atunci log a q b n = n/q log a b. Teorema a fost demonstrată.

Exemple de probleme și inegalități

Cele mai comune tipuri de probleme de logaritm sunt exemple de ecuații și inegalități. Ele se găsesc în aproape toate cărțile de probleme și sunt incluse și în partea obligatorie a examenelor de matematică. Pentru admitere la universitate sau promovare examenele de admitere la matematică, trebuie să știi să rezolvi corect astfel de probleme.

Din păcate, un singur plan sau schemă de abordat și determinat valoare necunoscută nu există logaritm, totuși, anumite reguli pot fi aplicate fiecărei inegalități matematice sau ecuații logaritmice. În primul rând, ar trebui să aflați dacă expresia poate fi simplificată sau redusă la vedere generala. Puteți simplifica expresiile logaritmice lungi dacă le folosiți corect proprietățile. Să-i cunoaștem curând.

La hotărâre ecuații logaritmice, este necesar să stabilim ce fel de logaritm avem în fața noastră: un exemplu de expresie poate conține un logaritm natural sau unul zecimal.

Iată exemple ln100, ln1026. Soluția lor se rezumă la faptul că trebuie să determinați gradul în care baza 10 va fi egală cu 100 și, respectiv, 1026. Pentru soluțiile logaritmilor naturali, trebuie aplicate identitățile logaritmice sau proprietățile acestora. Să ne uităm la exemple de rezolvare a problemelor logaritmice de diferite tipuri.

Cum să utilizați formulele logaritmice: cu exemple și soluții

Deci, să ne uităm la exemple de utilizare a teoremelor principale pe logaritmi.

  1. Proprietatea logaritmului produsului poate fi utilizată în sarcini în care este necesară descompunerea unei valori mari a numărului b în factori mai simpli. De exemplu, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Răspunsul este 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - după cum puteți vedea, folosind a patra proprietate a gradului logaritmului, am reușit să rezolvăm la prima vedere o expresie complexă și de nerezolvat. Este necesar doar să factorizați baza și apoi să scoateți valorile exponentului din semnul logaritmului.

Sarcini de la examen

Logaritmii se găsesc adesea la examenele de admitere, în special o mulțime de probleme logaritmice la examenul de stat unificat (examen de stat pentru toți absolvenții de școală). De obicei, aceste sarcini sunt prezente nu numai în partea A (cea mai ușoară parte a testului a examenului), ci și în partea C (cele mai dificile și mai voluminoase sarcini). Examenul presupune o cunoaștere exactă și perfectă a temei „Logaritmi naturali”.

Exemplele și rezolvarea problemelor sunt preluate din versiunile oficiale ale examenului. Să vedem cum se rezolvă astfel de sarcini.

Dat log 2 (2x-1) = 4. Rezolvare:
să rescriem expresia, simplificând-o puțin log 2 (2x-1) = 2 2 , prin definiția logaritmului obținem că 2x-1 = 2 4 , deci 2x = 17; x = 8,5.

  • Toți logaritmii se reduc cel mai bine la aceeași bază, astfel încât soluția să nu fie greoaie și confuză.
  • Toate expresiile sub semnul logaritmului sunt indicate ca pozitive, prin urmare, la scoaterea exponentului exponentului expresiei, care se află sub semnul logaritmului și ca bază, expresia rămasă sub logaritm trebuie să fie pozitivă.

(din grecescul λόγος - „cuvânt”, „relație” și ἀριθμός - „număr”) numere b prin rațiune A(log α b) se numește un astfel de număr c, și b= a c, adică log α b=cși b=ac sunt echivalente. Logaritmul are sens dacă a > 0, a ≠ 1, b > 0.

Cu alte cuvinte logaritm numere b prin rațiune A formulat ca un exponent la care trebuie ridicat un număr A pentru a obține numărul b(logaritmul există doar pentru numere pozitive).

Din această formulare rezultă că calculul x= log α b, este echivalent cu rezolvarea ecuației a x =b.

De exemplu:

log 2 8 = 3 deoarece 8=2 3 .

Remarcăm că formularea indicată a logaritmului face posibilă determinarea imediată valoarea logaritmului când numărul de sub semnul logaritmului este o anumită putere a bazei. Într-adevăr, formularea logaritmului face posibilă justificarea că dacă b=a c, apoi logaritmul numărului b prin rațiune A egală Cu. De asemenea, este clar că subiectul logaritmului este strâns legat de subiect grad de număr.

Se face referire la calculul logaritmului logaritm. Logaritmul este operația matematică de luare a unui logaritm. Atunci când se ia un logaritm, produsele factorilor sunt transformate în sume de termeni.

Potentarea este operația matematică inversă logaritmului. La potențare, baza dată este ridicată la puterea expresiei pe care se realizează potențarea. În acest caz, sumele de termeni sunt transformate în produsul factorilor.

Destul de des, se folosesc logaritmi reali cu baze 2 (binare), e număr Euler e ≈ 2,718 (logaritm natural) și 10 (zecimal).

În această etapă, merită luat în considerare mostre de logaritmi jurnal 7 2 , ln 5, lg0.0001.

Și intrările lg (-3), log -3 3,2, log -1 -4,3 nu au sens, deoarece în primul dintre ele un număr negativ este plasat sub semnul logaritmului, în al doilea - un număr negativ în baza, iar în al treilea - și un număr negativ sub semnul logaritmului și al unității în bază.

Condiții pentru determinarea logaritmului.

Merită să luăm în considerare separat condițiile a > 0, a ≠ 1, b > 0. definirea unui logaritm. Să ne gândim de ce sunt luate aceste restricții. Acest lucru ne va ajuta cu o egalitate de forma x = log α b, numită identitate logaritmică de bază, care decurge direct din definiția logaritmului dată mai sus.

Luați condiția a≠1. Deoarece unu este egal cu unu la orice putere, atunci egalitatea x=log α b poate exista doar atunci când b=1, dar log 1 1 va fi orice număr real. Pentru a elimina această ambiguitate, luăm a≠1.

Să demonstrăm necesitatea condiției a>0. La a=0 conform formulării logaritmului, poate exista numai atunci când b=0. Și apoi în consecință log 0 0 poate fi orice număr real diferit de zero, deoarece de la zero la orice putere diferită de zero este zero. Pentru a elimina această ambiguitate, condiția a≠0. Și atunci când A<0 ar trebui să respingem analiza valorilor raționale și iraționale ale logaritmului, deoarece exponentul cu exponent rațional și irațional este definit doar pentru baze nenegative. Din acest motiv, condiția a>0.

Și ultima condiție b>0 rezultă din inegalitate a>0, deoarece x=log α b, și valoarea gradului cu bază pozitivă A intotdeauna pozitiv.

Caracteristicile logaritmilor.

Logaritmi caracterizat prin distinctiv Caracteristici, ceea ce a dus la utilizarea lor pe scară largă pentru a facilita foarte mult calculele minuțioase. În trecerea „în lumea logaritmilor”, înmulțirea se transformă în adunare mult mai ușoară, împărțirea în scădere, iar exponențiația și extragerea rădăcinilor se transformă în înmulțire și, respectiv, împărțirea cu exponent.

Formularea logaritmilor și un tabel al valorilor acestora (pentru funcțiile trigonometrice) au fost publicate pentru prima dată în 1614 de matematicianul scoțian John Napier. Tabelele logaritmice, mărite și detaliate de alți oameni de știință, au fost utilizate pe scară largă în calculele științifice și inginerești și au rămas relevante până când calculatoarele electronice și calculatoarele au început să fie folosite.

Logaritmul unui număr N prin rațiune A se numeste exponent X , la care trebuie să ridici A pentru a obține numărul N

Cu conditia ca
,
,

Din definiţia logaritmului rezultă că
, adică
- această egalitate este de bază identitate logaritmică.

Logaritmii la baza 10 se numesc logaritmi zecimali. În loc de
scrie
.

logaritmi de bază e sunt numite naturale și notate
.

Proprietățile de bază ale logaritmilor.

    Logaritmul unității pentru orice bază este zero

    Logaritmul produsului este egal cu suma logaritmilor factorilor.

3) Logaritmul coeficientului este egal cu diferența logaritmilor


Factor
se numește modulul de tranziție de la logaritmi la bază A la logaritmi la bază b .

Folosind proprietățile 2-5, este adesea posibil să se reducă logaritmul unei expresii complexe la rezultatul celor simple. operatii aritmetice peste logaritmi.

De exemplu,

Astfel de transformări ale logaritmului se numesc logaritmi. Transformările reciproce ale logaritmilor se numesc potențare.

Capitolul 2. Elemente de matematică superioară.

1. Limite

limita functiei
este un număr finit A dacă, când se străduiește xx 0 pentru fiecare prestabilit
, există un număr
că de îndată ce
, apoi
.

O funcție care are o limită diferă de aceasta printr-o sumă infinitezimală:
, unde - b.m.w., i.e.
.

Exemplu. Luați în considerare funcția
.

Când te străduiești
, funcție y merge la zero:

1.1. Teoreme de bază despre limite.

    Limita unei valori constante este egală cu această valoare constantă

.

    Limita sumei (diferenței) unui număr finit de funcții este egală cu suma (diferenței) limitelor acestor funcții.

    Limita unui produs al unui număr finit de funcții este egală cu produsul limitelor acestor funcții.

    Limita câtului a două funcții este egală cu câtul limitelor acestor funcții dacă limita numitorului nu este egală cu zero.

Limite remarcabile

,
, Unde

1.2. Exemple de calcul al limitelor

Cu toate acestea, nu toate limitele sunt calculate atât de simplu. Mai des, calculul limitei se reduce la dezvăluirea incertitudinii de tip: sau .

.

2. Derivata unei functii

Să avem o funcție
, continuu pe segment
.

Argument a primit un impuls
. Apoi funcția va fi incrementată
.

Valoarea argumentului corespunde valorii funcției
.

Valoarea argumentului
corespunde valorii funcției .

Prin urmare, .

Să găsim limita acestei relații la
. Dacă această limită există, atunci se numește derivată a funcției date.

Definiția derivatei 3 a unei funcții date
prin argumentare se numește limita raportului dintre incrementul funcției și incrementul argumentului, când incrementul argumentului tinde în mod arbitrar spre zero.

Derivată de funcție
poate fi notat astfel:

; ; ; .

Definiția 4 Operația de găsire a derivatei unei funcții se numește diferenţiere.

2.1. Sensul mecanic al derivatului.

Luați în considerare mișcarea rectilinie a unui corp rigid sau punct material.

Lasă la un moment dat punct de mișcare
era la distanta din pozitia de start
.

După o perioadă de timp
ea sa deplasat o distanta
. Atitudine =- viteza medie punct material
. Să găsim limita acestui raport, ținând cont de faptul că
.

În consecință, determinarea vitezei instantanee a unui punct material se reduce la găsirea derivatei traseului în raport cu timpul.

2.2. Valoarea geometrică a derivatei

Să presupunem că avem o anumită funcție definită grafic
.

Orez. 1. Sensul geometric al derivatului

În cazul în care un
, apoi punctul
, se va deplasa de-a lungul curbei, apropiindu-se de punct
.

prin urmare
, adică valoarea derivatei având în vedere valoarea argumentului este egal numeric cu tangenta unghiului format de tangenta intr-un punct dat cu directia pozitiva a axei
.

2.3. Tabelul formulelor de diferențiere de bază.

Funcția de putere

Functie exponentiala

funcţie logaritmică

functie trigonometrica

Verso functie trigonometrica

2.4. Reguli de diferențiere.

Derivat din

Derivată a sumei (diferenței) funcțiilor


Derivată a produsului a două funcții


Derivata coeficientului a doua functii


2.5. Derivată a unei funcții complexe.

Lasă funcția
astfel încât să poată fi reprezentat ca

și
, unde variabila este un argument intermediar, atunci

Derivata unei functii complexe este egala cu produsul derivatei functiei date fata de argumentul intermediar cu derivata argumentului intermediar fata de x.

Exemplul 1.

Exemplul 2.

3. Diferenţial de funcţie.

Să fie
, diferentiabil pe un anumit interval
lăsați-l să plece la această funcție are o derivată

,

atunci poti sa scrii

(1),

Unde - o cantitate infinitezimală,

deoarece la

Înmulțirea tuturor termenilor de egalitate (1) cu
avem:

Unde
- b.m.v. de ordin superior.

Valoare
se numește diferența funcției
și notat

.

3.1. Valoarea geometrică a diferenţialului.

Lasă funcția
.

Fig.2. Sensul geometric al diferenţialului.

.

Evident, diferența funcției
este egală cu incrementul ordonatei tangentei în punctul dat.

3.2. Derivate și diferențiale de diverse ordine.

Daca exista
, apoi
se numeste prima derivata.

Derivata primei derivate se numeste derivata de ordinul doi si se scrie
.

Derivată de ordinul al n-lea al funcției
se numește derivată de ordin (n-1) și se scrie:

.

Diferenţialul diferenţialului unei funcţii se numeşte diferenţial a doua sau diferenţial de ordinul doi.

.

.

3.3 Rezolvarea problemelor biologice folosind diferențierea.

Sarcina 1. Studiile au arătat că creșterea unei colonii de microorganisme respectă legea
, Unde N – numărul de microorganisme (în mii), t – timp (zile).

b) Populația coloniei va crește sau va scădea în această perioadă?

Răspuns. Colonia va crește în dimensiune.

Sarcina 2. Apa din lac este testată periodic pentru a controla conținutul de bacterii patogene. Prin t zile după testare, concentrația de bacterii este determinată de raport

.

Când va veni concentrația minimă de bacterii în lac și se va putea înota în el?

Soluție O funcție atinge max sau min atunci când derivata ei este zero.

,

Să stabilim că max sau min va fi în 6 zile. Pentru a face acest lucru, luăm derivata a doua.


Răspuns: După 6 zile va exista o concentrație minimă de bacterii.

Instruire

Notați expresia logaritmică dată. Dacă expresia folosește logaritmul lui 10, atunci notația sa este scurtată și arată astfel: lg b este logaritm zecimal. Dacă logaritmul are ca bază numărul e, atunci se scrie expresia: ln b este logaritmul natural. Se înțelege că rezultatul oricărei este puterea la care trebuie ridicat numărul de bază pentru a obține numărul b.

Când găsiți două funcții din sumă, trebuie doar să le diferențiați una câte una și să adăugați rezultatele: (u+v)" = u"+v";

La găsirea derivatei produsului a două funcții, este necesar să înmulțiți derivata primei funcții cu a doua și să adăugați derivata celei de-a doua funcții, înmulțită cu prima funcție: (u*v)" = u"* v+v"*u;

Pentru a afla derivata coeficientului a doua functii este necesar, din produsul derivatei dividendului inmultit cu functia divizor, sa scadem produsul derivatei divizorului inmultit cu functia divizor si sa impartim toate acestea prin funcția divizor la pătrat. (u/v)" = (u"*v-v"*u)/v^2;

Dacă este dat functie complexa, atunci este necesar să se înmulțească derivata funcției interioare și derivata celei exterioare. Fie y=u(v(x)), apoi y"(x)=y"(u)*v"(x).

Folosind cele obținute mai sus, puteți diferenția aproape orice funcție. Deci, să ne uităm la câteva exemple:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2 *X));
Există, de asemenea, sarcini pentru calcularea derivatei la un punct. Fie dată funcția y=e^(x^2+6x+5), trebuie să găsiți valoarea funcției în punctul x=1.
1) Aflați derivata funcției: y"=e^(x^2-6x+5)*(2*x +6).

2) Calculați valoarea funcției în punct dat y"(1)=8*e^0=8

Videoclipuri similare

Sfat util

Învață tabelul derivatelor elementare. Acest lucru va economisi mult timp.

Surse:

  • derivată constantă

Deci, care este diferența între ecuație rațională din rațional? Dacă variabila necunoscută se află sub semnul rădăcină pătrată, atunci ecuația este considerată irațională.

Instruire

Principala metodă de rezolvare a unor astfel de ecuații este metoda de ridicare a ambelor părți ecuațiiîntr-un pătrat. In orice caz. acest lucru este firesc, primul pas este să scapi de semn. Din punct de vedere tehnic, această metodă nu este dificilă, dar uneori poate duce la probleme. De exemplu, ecuația v(2x-5)=v(4x-7). Punând la pătrat ambele părți, obțineți 2x-5=4x-7. O astfel de ecuație nu este greu de rezolvat; x=1. Dar numărul 1 nu va fi dat ecuații. De ce? Înlocuiți unitatea din ecuație în loc de valoarea x. Și părțile din dreapta și din stânga vor conține expresii care nu au sens, adică. O astfel de valoare nu este valabilă pentru o rădăcină pătrată. Prin urmare, 1 este o rădăcină străină și, prin urmare, această ecuație nu are rădăcini.

Deci, o ecuație irațională se rezolvă folosind metoda punerii la pătrat a ambelor părți. Și după ce am rezolvat ecuația, este necesar să tăiați rădăcinile străine. Pentru a face acest lucru, înlocuiți rădăcinile găsite în ecuația originală.

Luați în considerare altul.
2x+vx-3=0
Desigur, această ecuație poate fi rezolvată folosind aceeași ecuație ca cea anterioară. Compuși de transfer ecuații, care nu au rădăcină pătrată, partea dreaptași apoi folosiți metoda pătratului. rezolvați ecuația rațională și rădăcinile rezultate. Dar altul, mai elegant. Introduceți o nouă variabilă; vx=y. În consecință, veți obține o ecuație ca 2y2+y-3=0. Aceasta este ecuația pătratică obișnuită. Găsește-i rădăcinile; y1=1 și y2=-3/2. Apoi, rezolvă două ecuații vx=1; vx \u003d -3/2. A doua ecuație nu are rădăcini, din prima găsim că x=1. Nu uitați de necesitatea de a verifica rădăcinile.

Rezolvarea identităților este destul de ușoară. Acest lucru necesită realizarea de transformări identice până la atingerea scopului. Astfel, cu ajutorul celor mai simple operații aritmetice, sarcina va fi rezolvată.

Vei avea nevoie

  • - hartie;
  • - un stilou.

Instruire

Cele mai simple astfel de transformări sunt înmulțirile algebrice abreviate (cum ar fi pătratul sumei (diferența), diferența de pătrate, suma (diferența), cubul sumei (diferența)). În plus, există multe formule trigonometrice care sunt în esență aceleași identități.

Într-adevăr, pătratul sumei a doi termeni este egală cu pătratul al primului plus de două ori produsul primei și al doilea plus pătratul celui de-al doilea, adică (a+b)^2= (a+b)(a+b)=a^2+ab +ba+b^ 2=a^2+2ab +b^2.

Simplificați ambele

Principii generale de rezolvare

Revizuiește un manual de calcul sau matematică superioară, care este o integrală definită. După cum știți, soluția integrala definita există o funcţie a cărei derivată va da un integrand. Această funcție se numește antiderivată. Conform acestui principiu se construiesc integralele de bază.
Determinați după forma integrandului care dintre integralele tabelului este potrivită în acest caz. Nu este întotdeauna posibil să determinați acest lucru imediat. Adesea, forma tabulară devine vizibilă numai după mai multe transformări pentru a simplifica integrandul.

Metoda substituției variabile

Dacă integrandul este o funcție trigonometrică al cărei argument este un polinom, atunci încercați să utilizați metoda schimbării variabilelor. Pentru a face acest lucru, înlocuiți polinomul din argumentul integrandului cu o nouă variabilă. Pe baza raportului dintre variabila nouă și veche, determinați noile limite de integrare. Prin diferențierea acestei expresii, găsiți o nouă diferență în . Astfel vei primi noul fel prima integrală, apropiată sau chiar corespunzătoare oricărui tabel.

Rezolvarea integralelor de al doilea fel

Dacă integrala este o integrală de al doilea fel, forma vectorială a integrandului, atunci va trebui să utilizați regulile pentru trecerea de la aceste integrale la cele scalare. O astfel de regulă este raportul Ostrogradsky-Gauss. Această lege face posibilă trecerea de la fluxul rotor al unei anumite funcții vectoriale la o integrală triplă peste divergența unui câmp vectorial dat.

Înlocuirea limitelor integrării

După găsirea antiderivatei, este necesar să se substituie limitele integrării. În primul rând, înlocuiți valoarea limitei superioare în expresia pentru antiderivată. Vei primi un număr. Apoi, scădeți din numărul rezultat un alt număr, limita inferioară rezultată la antiderivată. Dacă una dintre limitele de integrare este infinitul, atunci când o înlocuiți în funcția antiderivată, este necesar să mergeți la limită și să găsiți spre ce tinde expresia.
Dacă integrala este bidimensională sau tridimensională, atunci va trebui să reprezentați limitele geometrice ale integrării pentru a înțelege cum să calculați integrala. Într-adevăr, în cazul, de exemplu, a unei integrale tridimensionale, limitele integrării pot fi plane întregi care limitează volumul de integrat.
 

Vă rugăm să distribuiți acest articol pe rețelele de socializare dacă a fost de ajutor!