समाधान के साथ घातीय समीकरणों का समाधान ऑनलाइन कैलकुलेटर। समीकरणों की प्रणाली को कैसे हल किया जाता है? समीकरणों की प्रणालियों को हल करने के तरीके

मैं कुल्हाड़ी 2 \u003d 0अधूरा द्विघात समीकरण (बी = 0, सी = 0 ) हल: एक्स = 0। उत्तर : 0.

समीकरण हल करें।

2x·(x+3)=6x-x 2 ।

समाधान।गुणा करके कोष्ठक का विस्तार करें 2xकोष्ठक में प्रत्येक पद के लिए:

2x2 +6x=6x-x2 ; शर्तों को दाईं ओर से बाईं ओर ले जाना:

2x2 +6x-6x+x2=0; यहाँ समान शब्द हैं:

3x 2 = 0, इसलिए x = 0।

उत्तर: 0.

द्वितीय. ax2+bx=0अधूरा द्विघात समीकरण (एस = 0 ) हल: x (ax+b)=0 → x 1 =0 या ax+b=0 → x 2 =-b/a। उत्तर: 0; -बी ० ए।

5x2 -26x=0.

समाधान।सामान्य कारक निकालें एक्सकोष्ठक के लिए:

एक्स(5x-26)=0; प्रत्येक कारक शून्य हो सकता है:

एक्स = 0या 5x-26=0→ 5x=26, समानता के दोनों पक्षों को विभाजित करें 5 और हमें मिलता है: x \u003d 5.2।

उत्तर: 0; 5,2.

उदाहरण 3 64x+4x2=0.

समाधान।सामान्य कारक निकालें 4 एक्सकोष्ठक के लिए:

4x(16+x)=0. हमारे पास तीन गुणनखंड हैं, 4≠0, इसलिए, या एक्स = 0या 16+x= 0। अंतिम समानता से हमें x=-16 प्राप्त होता है।

उत्तर: -16; 0.

उदाहरण 4(x-3) 2 +5x=9.

समाधान।दो व्यंजकों के अंतर के वर्ग के लिए सूत्र का प्रयोग करते हुए कोष्ठकों को खोलें:

x 2 -6x+9+5x=9; रूप में बदलना: x 2 -6x+9+5x-9=0; यहाँ समान शब्द हैं:

x2-x=0; सहना एक्सकोष्ठक के बाहर, हमें मिलता है: x (x-1)=0. यहाँ से या एक्स = 0या एक्स-1 = 0→ एक्स = 1।

उत्तर: 0; 1.

III. ax2+c=0अधूरा द्विघात समीकरण (बी = 0 ); समाधान: कुल्हाड़ी 2 \u003d -c → x 2 \u003d -c / a।

यदि एक (-सीए)<0 , तो कोई वास्तविक जड़ें नहीं हैं। यदि एक (-एस/ए)>0

उदाहरण 5एक्स 2 -49 = 0।

समाधान।

x 2 \u003d 49, यहाँ से एक्स = ± 7। उत्तर:-7; 7.

उदाहरण 6 9x2-4 = 0।

समाधान।

अक्सर आपको द्विघात समीकरण की जड़ों के वर्गों का योग (x 1 2 + x 2 2) या घनों का योग (x 1 3 + x 2 3) खोजने की आवश्यकता होती है, कम अक्सर - के व्युत्क्रमों का योग मूलों के वर्ग या द्विघात समीकरण की जड़ों से अंकगणितीय वर्गमूलों का योग:

Vieta का प्रमेय इसमें मदद कर सकता है:

x 2 +px+q=0

एक्स 1 + एक्स 2 \u003d-पी; एक्स 1 एक्स 2 \u003d क्यू।

अभिव्यक्त करना के माध्यम से पीतथा क्यू:

1) समीकरण की जड़ों के वर्गों का योग x2+px+q=0;

2) समीकरण की जड़ों के घनों का योग x2+px+q=0.

समाधान।

1) अभिव्यक्ति एक्स 1 2 + एक्स 2 2समीकरण के दोनों पक्षों का वर्ग करने पर प्राप्त होता है एक्स 1 + एक्स 2 \u003d-पी;

(x 1 +x 2) 2 \u003d (-पी) 2; कोष्ठक खोलें: x 1 2 +2x 1 x 2 + x 2 2 =p 2; हम वांछित राशि व्यक्त करते हैं: x 1 2 +x 2 2 \u003d p 2 -2x 1 x 2 \u003d p 2 -2q। हमारे पास एक उपयोगी समीकरण है: एक्स 1 2 +x 2 2 \u003d पी 2 -2q।

2) अभिव्यक्ति एक्स 1 3 + एक्स 2 3घनों के योग के सूत्र द्वारा निरूपित करें:

(x 1 3 +x 2 3)=(x 1 +x 2)(x 1 2 -x 1 x 2 +x 2 2)=-p (p 2 -2q-q)=-p (p 2 -3q )

एक और उपयोगी समीकरण: एक्स 1 3 + एक्स 2 3 \u003d-पी (पी 2 -3q)।

उदाहरण।

3) x 2 -3x-4=0.समीकरण को हल किए बिना, व्यंजक के मान की गणना करें एक्स 1 2 + एक्स 2 2.

समाधान।

एक्स 1 + एक्स 2 \u003d-पी \u003d 3,और काम एक्स 1 x 2 \u003d क्यू \u003dउदाहरण 1 . में) समानता:

एक्स 1 2 +x 2 2 \u003d पी 2 -2q।हमारे पास है -पी=x 1 +x 2 = 3 → पी 2 =3 2 =9; क्यू =एक्स 1 एक्स 2 = -4. फिर x 1 2 + x 2 2 =9-2 (-4)=9+8=17.

उत्तर: x 1 2 + x 2 2 =17.

4) x 2 -2x-4=0.गणना करें: x 1 3 +x 2 3।

समाधान।

विएटा के प्रमेय द्वारा, इस कम किए गए द्विघात समीकरण की जड़ों का योग एक्स 1 + एक्स 2 \u003d-पी \u003d 2,और काम एक्स 1 x 2 \u003d क्यू \u003d-चार। हमें जो मिला है उसे लागू करें ( उदाहरण 2 . में) समानता: x 1 3 +x 2 3 \u003d-पी (पी 2 -3q) \u003d 2 (2 2 -3 (-4))=2 (4+12)=2 16=32.

उत्तर: एक्स 1 3 + एक्स 2 3 = 32।

प्रश्न: क्या होगा यदि हमें एक गैर-घटित द्विघात समीकरण दिया जाए? उत्तर: इसे पहले गुणांक द्वारा पद से पद को विभाजित करके हमेशा "कम" किया जा सकता है।

5) 2x2 -5x-7=0.हल किए बिना, गणना करें: एक्स 1 2 + एक्स 2 2.

समाधान।हमें एक पूर्ण द्विघात समीकरण दिया गया है। समीकरण के दोनों पक्षों को 2 (पहला गुणांक) से विभाजित करें और निम्नलिखित द्विघात समीकरण प्राप्त करें: x 2 -2.5x-3.5 \u003d 0.

विएटा के प्रमेय के अनुसार, जड़ों का योग है 2,5 ; जड़ों का उत्पाद है -3,5 .

हम एक उदाहरण के रूप में उसी तरह हल करते हैं 3) समानता का उपयोग करना: एक्स 1 2 +x 2 2 \u003d पी 2 -2q।

x 1 2 +x 2 2 =p 2 -2q= 2,5 2 -2∙(-3,5)=6,25+7=13,25.

उत्तर: x 1 2 + x 2 2 = 13,25.

6) x2 -5x-2=0.पाना:

आइए हम इस समानता को रूपांतरित करें और, वियत प्रमेय के संदर्भ में जड़ों के योग को प्रतिस्थापित करके, -पी, और जड़ों के उत्पाद के माध्यम से क्यू, हमें एक और उपयोगी सूत्र मिलता है। सूत्र प्राप्त करते समय, हमने समानता का उपयोग किया 1): एक्स 1 2 +x 2 2 \u003d पी 2 -2q।

हमारे उदाहरण में एक्स 1 + एक्स 2 \u003d -पी \u003d 5; एक्स 1 x 2 \u003d क्यू \u003d-2. इन मानों को परिणामी सूत्र में बदलें:

7) x 2 -13x+36=0.पाना:

आइए इस योग को रूपांतरित करें और एक सूत्र प्राप्त करें जिसके द्वारा द्विघात समीकरण के मूलों से अंकगणितीय वर्गमूलों का योग ज्ञात करना संभव होगा।

हमारे पास है एक्स 1 + एक्स 2 \u003d -पी \u003d 13; एक्स 1 x 2 \u003d क्यू \u003d 36. इन मानों को व्युत्पन्न सूत्र में रखें:

सलाह : हमेशा एक द्विघात समीकरण के मूल को उपयुक्त तरीके से खोजने की संभावना की जाँच करें, क्योंकि 4 की समीक्षा की उपयोगी सूत्र आपको कार्य को शीघ्रता से पूरा करने की अनुमति देता है, सबसे पहले, उन मामलों में जहां विवेचक एक "असुविधाजनक" संख्या है। सभी साधारण मामलों में, जड़ों को खोजें और उन पर कार्य करें। उदाहरण के लिए, पिछले उदाहरण में, हम वियत प्रमेय का उपयोग करके जड़ों का चयन करते हैं: जड़ों का योग बराबर होना चाहिए 13 , और जड़ों का उत्पाद 36 . ये संख्याएँ क्या हैं? बेशक, 4 और 9.अब इन संख्याओं के वर्गमूलों का योग ज्ञात कीजिए: 2+3=5. इतना ही!

I. वियत का प्रमेयकम द्विघात समीकरण के लिए।

घटे हुए द्विघात समीकरण के मूलों का योग x 2 +px+q=0विपरीत चिह्न के साथ लिए गए दूसरे गुणांक के बराबर है, और जड़ों का गुणनफल मुक्त पद के बराबर है:

एक्स 1 + एक्स 2 \u003d-पी; एक्स 1 एक्स 2 \u003d क्यू।

विएटा के प्रमेय का उपयोग करके दिए गए द्विघात समीकरण के मूल ज्ञात कीजिए।

उदाहरण 1) x 2 -x-30=0.यह घटा हुआ द्विघात समीकरण है ( x 2 +px+q=0), दूसरा गुणांक पी = -1, और मुक्त अवधि क्यू = -30।सबसे पहले, सुनिश्चित करें कि दिए गए समीकरण के मूल हैं और मूल (यदि कोई हो) को पूर्णांकों के रूप में व्यक्त किया जाएगा। इसके लिए, यह पर्याप्त है कि विवेचक एक पूर्णांक का पूर्ण वर्ग हो।

विभेदक का पता लगाना डी=बी 2 - 4ac=(-1) 2 -4∙1∙(-30)=1+120=121= 11 2 .

अब, विएटा प्रमेय के अनुसार, जड़ों का योग दूसरे गुणांक के बराबर होना चाहिए, जिसे विपरीत चिह्न के साथ लिया जाता है, अर्थात। ( -पी), और उत्पाद मुक्त अवधि के बराबर है, अर्थात। ( क्यू) फिर:

एक्स 1 + एक्स 2 = 1; एक्स 1 एक्स 2 \u003d -30।हमें ऐसी दो संख्याओं को चुनने की आवश्यकता है ताकि उनका गुणनफल के बराबर हो -30 , और योग है इकाई. ये हैं नंबर -5 तथा 6 . उत्तर: -5; 6.

उदाहरण 2) x 2 +6x+8=0.हमारे पास दूसरे गुणांक के साथ कम द्विघात समीकरण है पी=6और मुक्त सदस्य क्यू = 8. सुनिश्चित करें कि पूर्णांक जड़ें हैं। आइए जानें विवेचक डी1 डी1=3 2 -1∙8=9-8=1=1 2 . विवेचक D 1 संख्या का पूर्ण वर्ग है 1 , इसलिए इस समीकरण के मूल पूर्णांक हैं। हम वियत प्रमेय के अनुसार जड़ों का चयन करते हैं: जड़ों का योग बराबर होता है -पी=-6, और जड़ों का उत्पाद है क्यू = 8. ये हैं नंबर -4 तथा -2 .

असल में: -4-2=-6=-पी; -4∙(-2)=8=q. उत्तर - 4; -2।

उदाहरण 3) x 2 +2x-4=0. इस घटे हुए द्विघात समीकरण में, दूसरा गुणांक पी=2, और मुक्त अवधि क्यू = -4. आइए जानें विवेचक डी1, क्योंकि दूसरा गुणांक एक सम संख्या है। डी1=1 2 -1∙(-4)=1+4=5. विवेचक किसी संख्या का पूर्ण वर्ग नहीं है, इसलिए हम करते हैं निष्कर्ष: इस समीकरण के मूल पूर्णांक नहीं हैं और इन्हें विएटा के प्रमेय का उपयोग करके नहीं पाया जा सकता है।इसलिए, हम इस समीकरण को हमेशा की तरह, सूत्रों के अनुसार (इस मामले में, सूत्रों के अनुसार) हल करते हैं। हम पाते हैं:

उदाहरण 4)।इसके मूलों का प्रयोग करते हुए एक द्विघात समीकरण लिखिए यदि x 1 \u003d -7, x 2 \u003d 4.

समाधान।वांछित समीकरण फॉर्म में लिखा जाएगा: x 2 +px+q=0, इसके अलावा, Vieta प्रमेय पर आधारित है -p=x1 +x2=-7+4=-3 →पी=3; क्यू = एक्स 1 x 2=-7∙4=-28 . तब समीकरण रूप लेगा: x2 +3x-28=0.

उदाहरण 5)।इसके मूलों का प्रयोग करते हुए एक द्विघात समीकरण लिखिए यदि :

द्वितीय. विएटा का प्रमेयपूर्ण द्विघात समीकरण के लिए ax2+bx+c=0.

जड़ों का योग शून्य है बीद्वारा विभाजित एक, जड़ों का उत्पाद है साथद्वारा विभाजित एक:

एक्स 1 + एक्स 2 \u003d -बी / ए; एक्स 1 एक्स 2 \u003d सी / ए।

उदाहरण 6)।द्विघात समीकरण के मूलों का योग ज्ञात कीजिए 2x2 -7x-11=0.

समाधान।

हमें विश्वास है कि इस समीकरण की जड़ें होंगी। ऐसा करने के लिए, विवेचक के लिए एक व्यंजक लिखना पर्याप्त है, और इसकी गणना किए बिना, बस यह सुनिश्चित करें कि विवेचक शून्य से बड़ा है। डी=7 2 -4∙2∙(-11)>0 . और अब उपयोग करते हैं प्रमेय वियतनामपूर्ण द्विघात समीकरणों के लिए।

एक्स 1 + एक्स 2 =-बी:ए=- (-7):2=3,5.

उदाहरण 7). द्विघात समीकरण के मूलों का गुणनफल ज्ञात कीजिए 3x2 +8x-21=0.

समाधान।

आइए जानें विवेचक डी1, दूसरे गुणांक के बाद से ( 8 ) एक सम संख्या है। डी1=4 2 -3∙(-21)=16+63=79>0 . द्विघात समीकरण है 2 जड़, वियत प्रमेय के अनुसार, जड़ों का उत्पाद एक्स 1 एक्स 2 \u003d सी: ए=-21:3=-7.

I. कुल्हाड़ी 2 +बीएक्स+सी=0एक सामान्य द्विघात समीकरण है

विभेदक डी = बी 2 - 4 एसी।

यदि एक डी>0, तो हमारे पास दो वास्तविक मूल हैं:

यदि एक डी = 0, तो हमारे पास एक ही मूल (या दो बराबर जड़ें) हैं एक्स=-बी/(2ए).

अगर डी<0, то действительных корней нет.

उदाहरण 1) 2x2 +5x-3=0.

समाधान। एक=2; बी=5; सी=-3.

डी = बी 2-4ac=5 2 -4∙2∙(-3)=25+24=49=7 2 >0; 2 असली जड़ें।

4x2 +21x+5=0.

समाधान। एक=4; बी=21; सी=5.

डी = बी 2-4ac=21 2 - 4∙4∙5=441-80=361=19 2 >0; 2 असली जड़ें।

द्वितीय. ax2+bx+c=0विशेष द्विघात समीकरण एक सेकंड के लिए भी

गुणक बी


उदाहरण 3) 3x2 -10x+3=0.

समाधान। एक=3; बी\u003d -10 (सम संख्या); सी=3.

उदाहरण 4) 5x2-14x-3=0.

समाधान। एक=5; बी= -14 (सम संख्या); सी=-3.

उदाहरण 5) 71x2 +144x+4=0.

समाधान। एक=71; बी= 144 (सम संख्या); सी=4.

उदाहरण 6) 9x 2 -30x+25=0.

समाधान। एक=9; बी\u003d -30 (सम संख्या); सी=25.

III. ax2+bx+c=0 द्विघात समीकरण निजी प्रकार, प्रदान किया गया: ए-बी+सी=0.

पहली जड़ हमेशा माइनस वन होती है, और दूसरी रूट माइनस होती है साथद्वारा विभाजित एक:

एक्स 1 \u003d -1, एक्स 2 \u003d - सी / ए।

उदाहरण 7) 2x2+9x+7=0.

समाधान। एक=2; बी=9; सी=7. आइए समानता की जाँच करें: ए-बी+सी=0.हम पाते हैं: 2-9+7=0 .

फिर x 1 \u003d -1, x 2 \u003d -c / a \u003d -7 / 2 \u003d -3.5।उत्तर: -1; -3,5.

चतुर्थ। ax2+bx+c=0 शर्त के तहत एक विशेष रूप का द्विघात समीकरण : ए+बी+सी=0.

पहली जड़ हमेशा एक के बराबर होती है, और दूसरी जड़ के बराबर होती है साथद्वारा विभाजित एक:

एक्स 1 \u003d 1, एक्स 2 \u003d सी / ए.

उदाहरण 8) 2x2 -9x+7=0.

समाधान। एक=2; बी=-9; सी=7. आइए समानता की जाँच करें: ए+बी+सी=0.हम पाते हैं: 2-9+7=0 .

फिर x 1 \u003d 1, x 2 \u003d c / a \u003d 7/2 \u003d 3.5।उत्तर: 1; 3,5.

1 1 का पेज 1

इस वीडियो में, हम एक ही एल्गोरिथम का उपयोग करके हल किए गए रैखिक समीकरणों के एक पूरे सेट का विश्लेषण करेंगे - इसलिए उन्हें सबसे सरल कहा जाता है।

आरंभ करने के लिए, आइए परिभाषित करें: एक रैखिक समीकरण क्या है और उनमें से किसे सबसे सरल कहा जाना चाहिए?

एक रैखिक समीकरण वह होता है जिसमें केवल एक चर होता है, और केवल पहली डिग्री में होता है।

सबसे सरल समीकरण का अर्थ है निर्माण:

अन्य रेखीय समीकरणएल्गोरिथम का उपयोग करके सरलतम में घटाया जाता है:

  1. खुले कोष्ठक, यदि कोई हों;
  2. एक चर वाले पदों को समान चिह्न के एक तरफ और बिना चर के पदों को दूसरी तरफ ले जाएं;
  3. समान चिह्न के बाएँ और दाएँ समान पदों को लाएँ;
  4. परिणामी समीकरण को चर $x$ के गुणांक से विभाजित करें।

बेशक, यह एल्गोरिथ्म हमेशा मदद नहीं करता है। तथ्य यह है कि कभी-कभी इन सभी साजिशों के बाद चर $x$ का गुणांक शून्य के बराबर हो जाता है। इस मामले में, दो विकल्प संभव हैं:

  1. समीकरण का कोई हल नहीं है। उदाहरण के लिए, जब आपको $0\cdot x=8$ जैसा कुछ मिलता है, यानी। बाईं ओर शून्य है, और दाईं ओर एक गैर-शून्य संख्या है। नीचे दिए गए वीडियो में, हम कई कारणों को देखेंगे कि यह स्थिति क्यों संभव है।
  2. समाधान सभी संख्याएं हैं। यह केवल तभी संभव है जब समीकरण को निर्माण $0\cdot x=0$ तक घटा दिया गया हो। यह काफी तार्किक है कि कोई फर्क नहीं पड़ता कि हम $x$ को प्रतिस्थापित करते हैं, फिर भी यह "शून्य बराबर शून्य" होगा, अर्थात। सही संख्यात्मक समानता।

और अब देखते हैं कि वास्तविक समस्याओं के उदाहरण पर यह सब कैसे काम करता है।

समीकरण हल करने के उदाहरण

आज हम रैखिक समीकरणों से निपटते हैं, और केवल सबसे सरल। सामान्य तौर पर, एक रैखिक समीकरण का अर्थ है कोई भी समानता जिसमें बिल्कुल एक चर होता है, और यह केवल पहली डिग्री तक जाता है।

इस तरह के निर्माण लगभग उसी तरह हल किए जाते हैं:

  1. सबसे पहले, आपको कोष्ठक खोलने की जरूरत है, यदि कोई हो (जैसा कि हमारे पिछले उदाहरण में है);
  2. फिर समान लाओ
  3. अंत में, चर को अलग करें, अर्थात। सब कुछ जो चर के साथ जुड़ा हुआ है - जिन शर्तों में यह निहित है - एक तरफ स्थानांतरित कर दिया जाता है, और इसके बिना जो कुछ भी रहता है वह दूसरी तरफ स्थानांतरित हो जाता है।

फिर, एक नियम के रूप में, आपको परिणामी समानता के प्रत्येक पक्ष पर समान लाने की आवश्यकता है, और उसके बाद यह केवल "x" के गुणांक से विभाजित करने के लिए रहता है, और हमें अंतिम उत्तर मिलेगा।

सिद्धांत रूप में, यह अच्छा और सरल दिखता है, लेकिन व्यवहार में, अनुभवी हाई स्कूल के छात्र भी काफी सरल रैखिक समीकरणों में आपत्तिजनक गलतियाँ कर सकते हैं। आमतौर पर, गलतियाँ या तो कोष्ठक खोलते समय, या "प्लस" और "माइनस" की गिनती करते समय की जाती हैं।

इसके अलावा, ऐसा होता है कि एक रैखिक समीकरण का कोई हल नहीं होता है, या इसलिए कि समाधान पूरी संख्या रेखा है, अर्थात। कोई संख्या। हम आज के पाठ में इन सूक्ष्मताओं का विश्लेषण करेंगे। लेकिन हम शुरू करेंगे, जैसा कि आप पहले ही समझ चुके हैं, सबसे अधिक सरल कार्य.

सरल रैखिक समीकरणों को हल करने की योजना

आरंभ करने के लिए, मैं एक बार फिर सबसे सरल रैखिक समीकरणों को हल करने की पूरी योजना लिखता हूं:

  1. कोष्ठक का विस्तार करें, यदि कोई हो।
  2. एकांत चर, यानी। सब कुछ जिसमें "x" होता है, एक तरफ स्थानांतरित हो जाता है, और "x" के बिना - दूसरी तरफ।
  3. हम समान शब्द प्रस्तुत करते हैं।
  4. हम गुणांक द्वारा "x" पर सब कुछ विभाजित करते हैं।

बेशक, यह योजना हमेशा काम नहीं करती है, इसमें कुछ सूक्ष्मताएं और तरकीबें हैं, और अब हम उन्हें जानेंगे।

सरल रैखिक समीकरणों के वास्तविक उदाहरणों को हल करना

कार्य 1

पहले चरण में, हमें कोष्ठकों को खोलना होगा। लेकिन वे इस उदाहरण में नहीं हैं, इसलिए हम इस चरण को छोड़ देते हैं। दूसरे चरण में, हमें चरों को अलग करने की आवश्यकता है। कृपया ध्यान दें: हम केवल व्यक्तिगत शर्तों के बारे में बात कर रहे हैं। चलो लिखते है:

हम बाईं ओर और दाईं ओर समान शब्द देते हैं, लेकिन यह पहले ही यहां किया जा चुका है। इसलिए, हम चौथे चरण पर आगे बढ़ते हैं: एक कारक से विभाजित करें:

\[\frac(6x)(6)=-\frac(72)(6)\]

यहां हमें जवाब मिला।

कार्य #2

इस कार्य में, हम कोष्ठकों का अवलोकन कर सकते हैं, तो आइए उनका विस्तार करें:

बाईं ओर और दाईं ओर, हम लगभग समान निर्माण देखते हैं, लेकिन आइए एल्गोरिथम के अनुसार कार्य करें, अर्थात। अनुक्रमक चर:

यहाँ कुछ इस प्रकार हैं:

यह किन जड़ों पर काम करता है? उत्तर: किसी के लिए। इसलिए, हम लिख सकते हैं कि $x$ कोई भी संख्या है।

कार्य #3

तीसरा रैखिक समीकरण पहले से ही अधिक दिलचस्प है:

\[\बाएं(6-x \दाएं)+\बाएं(12+x \दाएं)-\बाएं(3-2x \दाएं)=15\]

यहां कई कोष्ठक हैं, लेकिन उन्हें किसी भी चीज से गुणा नहीं किया जाता है, उनके सामने बस अलग-अलग संकेत होते हैं। आइए उन्हें तोड़ दें:

हम पहले से ज्ञात दूसरा चरण करते हैं:

\[-x+x+2x=15-6-12+3\]

आइए गणना करें:

हम अंतिम चरण करते हैं - हम गुणांक द्वारा "x" पर सब कुछ विभाजित करते हैं:

\[\frac(2x)(x)=\frac(0)(2)\]

रैखिक समीकरणों को हल करते समय याद रखने योग्य बातें

यदि हम बहुत सरल कार्यों को अनदेखा करते हैं, तो मैं निम्नलिखित कहना चाहूंगा:

  • जैसा कि मैंने ऊपर कहा, हर रैखिक समीकरण का कोई हल नहीं होता - कभी-कभी कोई मूल नहीं होता है;
  • जड़ें हों तो भी उनमें शून्य प्रवेश कर सकता है - इसमें कोई बुराई नहीं है।

जीरो बाकी के समान ही संख्या है, आप इसमें किसी तरह का भेदभाव न करें या यह मान लें कि यदि आपको शून्य मिलता है, तो आपने कुछ गलत किया है।

एक अन्य विशेषता कोष्ठक के विस्तार से संबंधित है। कृपया ध्यान दें: जब उनके सामने "माइनस" होता है, तो हम उसे हटा देते हैं, लेकिन कोष्ठक में हम संकेतों को बदल देते हैं विलोम. और फिर हम इसे मानक एल्गोरिदम के अनुसार खोल सकते हैं: हमें वही मिलेगा जो हमने ऊपर की गणना में देखा था।

इस सरल तथ्य को समझने से आपको हाई स्कूल में मूर्खतापूर्ण और हानिकारक गलतियाँ करने से बचने में मदद मिलेगी, जब इस तरह के कार्यों को करने की अनुमति नहीं दी जाती है।

जटिल रैखिक समीकरणों को हल करना

आइए अधिक जटिल समीकरणों पर चलते हैं। अब निर्माण अधिक जटिल हो जाएंगे और विभिन्न परिवर्तन करते समय एक द्विघात कार्य दिखाई देगा। हालाँकि, आपको इससे डरना नहीं चाहिए, क्योंकि यदि, लेखक की मंशा के अनुसार, हम एक रैखिक समीकरण को हल करते हैं, तो परिवर्तन की प्रक्रिया में एक द्विघात फ़ंक्शन वाले सभी मोनोमियल अनिवार्य रूप से कम हो जाएंगे।

उदाहरण 1

जाहिर है, पहला कदम कोष्ठक खोलना है। आइए इसे बहुत सावधानी से करें:

आइए अब गोपनीयता लेते हैं:

\[-x+6((x)^(2))-6((x)^(2))+x=-12\]

यहाँ कुछ इस प्रकार हैं:

जाहिर है, इस समीकरण का कोई हल नहीं है, इसलिए उत्तर में हम इस प्रकार लिखते हैं:

\[\विविधता \]

या कोई जड़ नहीं।

उदाहरण #2

हम एक ही कदम उठाते हैं। पहला कदम:

आइए एक चर के साथ सब कुछ बाईं ओर ले जाएं, और इसके बिना - दाईं ओर:

यहाँ कुछ इस प्रकार हैं:

जाहिर है, इस रैखिक समीकरण का कोई हल नहीं है, इसलिए हम इसे इस तरह लिखते हैं:

\[\varnothing\],

या कोई जड़ नहीं।

समाधान की बारीकियां

दोनों समीकरण पूरी तरह से हल हो गए हैं। इन दो अभिव्यक्तियों के उदाहरण पर, हमने एक बार फिर सुनिश्चित किया कि सरलतम रैखिक समीकरणों में भी, सब कुछ इतना सरल नहीं हो सकता है: या तो एक हो सकता है, या कोई नहीं, या असीम रूप से कई हो सकते हैं। हमारे मामले में, हमने दो समीकरणों पर विचार किया, दोनों में बस कोई जड़ नहीं है।

लेकिन मैं आपका ध्यान एक और तथ्य की ओर आकर्षित करना चाहूंगा: कोष्ठक के साथ कैसे काम करना है और अगर उनके सामने ऋण चिह्न है तो उन्हें कैसे खोलें। इस अभिव्यक्ति पर विचार करें:

खोलने से पहले, आपको सब कुछ "x" से गुणा करना होगा। कृपया ध्यान दें: गुणा करें प्रत्येक व्यक्तिगत शब्द. अंदर दो पद हैं - क्रमशः, दो पद और गुणा किया जाता है।

और इन प्राथमिक प्रतीत होने वाले, लेकिन बहुत महत्वपूर्ण और खतरनाक परिवर्तनों के पूरा होने के बाद ही, ब्रैकेट को इस दृष्टिकोण से खोला जा सकता है कि इसके बाद एक ऋण चिह्न है। हाँ, हाँ: केवल अब, जब परिवर्तन किया जाता है, तो हमें याद आता है कि कोष्ठक के सामने एक ऋण चिह्न है, जिसका अर्थ है कि सब कुछ नीचे बस संकेत बदलता है। उसी समय, कोष्ठक स्वयं गायब हो जाते हैं और, सबसे महत्वपूर्ण बात, सामने वाला "माइनस" भी गायब हो जाता है।

हम दूसरे समीकरण के साथ भी ऐसा ही करते हैं:

यह कोई संयोग नहीं है कि मैं इन छोटे, प्रतीत होने वाले महत्वहीन तथ्यों पर ध्यान देता हूं। क्योंकि समीकरणों को हल करना हमेशा प्रारंभिक परिवर्तनों का एक क्रम होता है, जहां सरल क्रियाओं को स्पष्ट और सक्षम रूप से करने में असमर्थता इस तथ्य की ओर ले जाती है कि हाई स्कूल के छात्र मेरे पास आते हैं और ऐसे सरल समीकरणों को फिर से हल करना सीखते हैं।

बेशक, वह दिन आएगा जब आप इन कौशलों को स्वचालितता में बदल देंगे। अब आपको हर बार इतने ट्रांसफॉर्मेशन नहीं करने हैं, आप सब कुछ एक लाइन में लिख देंगे। लेकिन जब आप अभी सीख रहे हैं, तो आपको प्रत्येक क्रिया को अलग से लिखना होगा।

और भी जटिल रैखिक समीकरणों को हल करना

अब हम जो हल करने जा रहे हैं, उसे शायद ही सबसे सरल कार्य कहा जा सकता है, लेकिन अर्थ वही रहता है।

कार्य 1

\[\बाएं(7x+1 \दाएं)\बाएं(3x-1 \दाएं)-21((x)^(2))=3\]

आइए पहले भाग में सभी तत्वों को गुणा करें:

आइए एक रिट्रीट करें:

यहाँ कुछ इस प्रकार हैं:

आइए अंतिम चरण करें:

\[\frac(-4x)(4)=\frac(4)(-4)\]

यहाँ हमारा अंतिम उत्तर है। और, इस तथ्य के बावजूद कि हल करने की प्रक्रिया में हमारे पास द्विघात फ़ंक्शन के साथ गुणांक थे, हालांकि, उन्होंने पारस्परिक रूप से सत्यानाश कर दिया, जो समीकरण को बिल्कुल रैखिक बनाता है, वर्ग नहीं।

कार्य #2

\[\बाएं(1-4x \दाएं)\बाएं(1-3x \दाएं)=6x\बाएं(2x-1 \दाएं)\]

आइए पहले चरण को ध्यान से करें: पहले कोष्ठक में प्रत्येक तत्व को दूसरे में प्रत्येक तत्व से गुणा करें। परिवर्तनों के बाद कुल मिलाकर चार नई शर्तें प्राप्त की जानी चाहिए:

और अब ध्यान से प्रत्येक पद में गुणा करें:

आइए शब्दों को "x" के साथ बाईं ओर ले जाएं, और बिना - दाईं ओर:

\[-3x-4x+12((x)^(2))-12((x)^(2))+6x=-1\]

यहाँ समान शब्द हैं:

हमें एक निश्चित उत्तर मिला है।

समाधान की बारीकियां

इन दो समीकरणों के बारे में सबसे महत्वपूर्ण टिप्पणी इस प्रकार है: जैसे ही हम उन कोष्ठकों को गुणा करना शुरू करते हैं जिनमें इससे बड़ा एक पद होता है, तो यह इस प्रकार किया जाता है अगला नियम: हम पहले पद से पहला पद लेते हैं और दूसरे से प्रत्येक तत्व से गुणा करते हैं; फिर हम पहले से दूसरा तत्व लेते हैं और इसी तरह दूसरे से प्रत्येक तत्व के साथ गुणा करते हैं। नतीजतन, हमें चार शब्द मिलते हैं।

बीजगणितीय योग पर

अंतिम उदाहरण के साथ, मैं छात्रों को याद दिलाना चाहूंगा कि बीजगणितीय योग क्या है। शास्त्रीय गणित में, $1-7$ से हमारा मतलब है सरल डिजाइन: एक से सात घटाएं। बीजगणित में, हमारा मतलब निम्न से है: संख्या "एक" में हम एक और संख्या जोड़ते हैं, जिसका नाम "माइनस सात" है। यह बीजीय योग सामान्य अंकगणितीय योग से भिन्न होता है।

जैसे ही सभी परिवर्तन, प्रत्येक जोड़ और गुणा करते समय, आप ऊपर वर्णित लोगों के समान निर्माण देखना शुरू करते हैं, बहुपद और समीकरणों के साथ काम करते समय आपको बीजगणित में कोई समस्या नहीं होगी।

अंत में, आइए कुछ और उदाहरण देखें जो हमारे द्वारा देखे गए उदाहरणों की तुलना में और भी अधिक जटिल होंगे, और उन्हें हल करने के लिए, हमें अपने मानक एल्गोरिथम का थोड़ा विस्तार करना होगा।

भिन्न के साथ समीकरण हल करना

ऐसे कार्यों को हल करने के लिए, हमारे एल्गोरिथ्म में एक और कदम जोड़ना होगा। लेकिन पहले, मैं अपने एल्गोरिथ्म को याद दिलाऊंगा:

  1. कोष्ठक खोलें।
  2. अलग चर।
  3. समान लाओ।
  4. एक कारक से विभाजित करें।

काश, यह अद्भुत एल्गोरिथ्म, इसकी सभी दक्षता के लिए, पूरी तरह से उपयुक्त नहीं होता जब हमारे सामने भिन्न होते हैं। और जो हम नीचे देखेंगे, दोनों समीकरणों में हमारे पास बाईं ओर और दाईं ओर एक भिन्न है।

इस मामले में कैसे काम करें? हाँ, यह बहुत आसान है! ऐसा करने के लिए, आपको एल्गोरिथ्म में एक और कदम जोड़ने की जरूरत है, जिसे पहली क्रिया से पहले और उसके बाद दोनों में किया जा सकता है, अर्थात्, अंशों से छुटकारा पाएं। इस प्रकार, एल्गोरिथ्म इस प्रकार होगा:

  1. अंशों से छुटकारा पाएं।
  2. कोष्ठक खोलें।
  3. अलग चर।
  4. समान लाओ।
  5. एक कारक से विभाजित करें।

"अंशों से छुटकारा पाने" का क्या अर्थ है? और पहले मानक चरण के बाद और पहले दोनों में ऐसा करना क्यों संभव है? वास्तव में, हमारे मामले में, सभी भिन्न हर के संदर्भ में संख्यात्मक होते हैं, अर्थात। हर जगह भाजक सिर्फ एक संख्या है। इसलिए, यदि हम समीकरण के दोनों भागों को इस संख्या से गुणा करते हैं, तो हमें भिन्नों से छुटकारा मिलेगा।

उदाहरण 1

\[\frac(\बाएं(2x+1 \दाएं)\बाएं(2x-3 \दाएं))(4)=((x)^(2))-1\]

आइए इस समीकरण में भिन्नों से छुटकारा पाएं:

\[\frac(\बाएं(2x+1 \right)\left(2x-3 \right)\cdot 4)(4)=\left(((x)^(2))-1 \right)\cdot चार\]

कृपया ध्यान दें: सब कुछ एक बार "चार" से गुणा किया जाता है, अर्थात। सिर्फ इसलिए कि आपके पास दो ब्रैकेट हैं इसका मतलब यह नहीं है कि आपको उनमें से प्रत्येक को "चार" से गुणा करना होगा। चलो लिखते है:

\[\बाएं(2x+1 \दाएं)\बाएं(2x-3 \दाएं)=\बाएं(((x)^(2))-1 \दाएं)\cdot 4\]

अब इसे खोलते हैं:

हम एक चर का एकांतीकरण करते हैं:

हम समान शर्तों को कम करते हैं:

\[-4x=-1\बाएं| :\बाएं(-4 \दाएं) \दाएं।\]

\[\frac(-4x)(-4)=\frac(-1)(-4)\]

हमें अंतिम समाधान मिल गया है, हम दूसरे समीकरण को पास करते हैं।

उदाहरण #2

\[\frac(\बाएं(1-x \दाएं)\बाएं(1+5x \दाएं))(5)+((x)^(2))=1\]

यहां हम सभी समान क्रियाएं करते हैं:

\[\frac(\left(1-x \right)\left(1+5x \right)\cdot 5)(5)+((x)^(2))\cdot 5=5\]

\[\frac(4x)(4)=\frac(4)(4)\]

समस्या हल हो गई।

वास्तव में, मैं आज यही बताना चाहता था।

प्रमुख बिंदु

प्रमुख निष्कर्ष इस प्रकार हैं:

  • रैखिक समीकरणों को हल करने के लिए एल्गोरिदम को जानें।
  • कोष्ठक खोलने की क्षमता।
  • अगर आपके पास कहीं है तो चिंता न करें द्विघात कार्य, सबसे अधिक संभावना है, आगे के परिवर्तनों की प्रक्रिया में, वे कम हो जाएंगे।
  • रैखिक समीकरणों में जड़ें, यहां तक ​​​​कि सबसे सरल, तीन प्रकार की होती हैं: एक एकल जड़, पूरी संख्या रेखा एक जड़ होती है, कोई जड़ें नहीं होती हैं।

मुझे आशा है कि यह पाठ आपको सभी गणित को और अधिक समझने के लिए एक सरल, लेकिन बहुत महत्वपूर्ण विषय में महारत हासिल करने में मदद करेगा। अगर कुछ स्पष्ट नहीं है, तो साइट पर जाएं, वहां प्रस्तुत उदाहरणों को हल करें। देखते रहिए, और भी कई दिलचस्प चीज़ें आपका इंतज़ार कर रही हैं!

आवेदन पत्र

छात्रों और स्कूली बच्चों द्वारा अध्ययन की गई सामग्री को समेकित करने के लिए साइट पर ऑनलाइन किसी भी प्रकार के समीकरणों का समाधान। समीकरणों को ऑनलाइन हल करना। ऑनलाइन समीकरण। बीजगणितीय, पैरामीट्रिक, अनुवांशिक, कार्यात्मक, अंतर और अन्य प्रकार के समीकरण हैं। समीकरणों के कुछ वर्गों में विश्लेषणात्मक समाधान होते हैं, जो सुविधाजनक होते हैं कि वे न केवल देते हैं सही मूल्यरूट, और आपको सूत्र के रूप में समाधान लिखने की अनुमति देता है, जिसमें पैरामीटर शामिल हो सकते हैं। विश्लेषणात्मक अभिव्यक्तियाँ न केवल जड़ों की गणना करने की अनुमति देती हैं, बल्कि मापदंडों के मूल्यों के आधार पर उनके अस्तित्व और उनकी संख्या का विश्लेषण करने की अनुमति देती हैं, जो अक्सर इसके लिए और भी महत्वपूर्ण होता है। व्यावहारिक अनुप्रयोगविशिष्ट मूल मूल्यों की तुलना में। समीकरणों का समाधान ऑनलाइन। समीकरण ऑनलाइन। समीकरण का समाधान तर्कों के ऐसे मूल्यों को खोजने का कार्य है जिनके लिए यह समानता प्राप्त की जाती है। पर संभावित मानतर्क थोपे जा सकते हैं अतिरिक्त शर्तें(पूर्णांक, वास्तविक, आदि)। समीकरणों का समाधान ऑनलाइन। समीकरण ऑनलाइन। आप तुरंत और परिणाम की उच्च सटीकता के साथ समीकरण को ऑनलाइन हल कर सकते हैं। एक समीकरण के मामले में दिए गए कार्यों के तर्क (कभी-कभी "चर" कहा जाता है) को "अज्ञात" कहा जाता है। अज्ञात के वे मान जिनके लिए यह समानता प्राप्त की जाती है, दिए गए समीकरण के हल या मूल कहलाते हैं। कहा जाता है कि जड़ें दिए गए समीकरण को संतुष्ट करती हैं। किसी समीकरण को ऑनलाइन हल करने का अर्थ है उसके सभी हलों (मूलों) का समुच्चय खोजना या यह सिद्ध करना कि कोई मूल नहीं है। समीकरणों का समाधान ऑनलाइन। समीकरण ऑनलाइन। समतुल्य या समतुल्य को समीकरण कहा जाता है, जिसके मूलों का समुच्चय मेल खाता है। समतुल्य को ऐसे समीकरण भी माना जाता है जिनकी जड़ें नहीं होती हैं। समीकरणों की तुल्यता में समरूपता का गुण होता है: यदि एक समीकरण दूसरे के बराबर है, तो दूसरा समीकरण पहले के बराबर है। समीकरणों की तुल्यता में ट्रांजिटिविटी का गुण होता है: यदि एक समीकरण दूसरे के बराबर है, और दूसरा तीसरे के बराबर है, तो पहला समीकरण तीसरे के बराबर है। समीकरणों की तुल्यता संपत्ति उनके साथ परिवर्तन करना संभव बनाती है, जिस पर उन्हें हल करने के तरीके आधारित होते हैं। समीकरणों का समाधान ऑनलाइन। समीकरण ऑनलाइन। साइट आपको ऑनलाइन समीकरण हल करने की अनुमति देगी। जिन समीकरणों के लिए विश्लेषणात्मक समाधान ज्ञात हैं उनमें बीजीय समीकरण शामिल हैं, जो चौथी डिग्री से अधिक नहीं हैं: एक रैखिक समीकरण, एक द्विघात समीकरण, एक घन समीकरण और चौथी डिग्री का समीकरण। बीजीय समीकरणसामान्य स्थिति में, उनके पास एक विश्लेषणात्मक समाधान नहीं होता है, हालांकि उनमें से कुछ को कम डिग्री के समीकरणों में घटाया जा सकता है। वे समीकरण जिनमें ट्रान्सेंडैंटल फ़ंक्शन शामिल होते हैं, ट्रान्सेंडैंटल कहलाते हैं। उनमें से, विश्लेषणात्मक समाधान कुछ के लिए जाने जाते हैं त्रिकोणमितीय समीकरण, शून्य के बाद से त्रिकोणमितीय फलनअच्छी तरह से जाना जाता है। सामान्य स्थिति में, जब एक विश्लेषणात्मक समाधान नहीं मिल पाता है, तो संख्यात्मक विधियों का उपयोग किया जाता है। संख्यात्मक तरीके सटीक समाधान नहीं देते हैं, लेकिन केवल उस अंतराल को कम करने की अनुमति देते हैं जिसमें मूल एक निश्चित पूर्व निर्धारित मूल्य पर होता है। समीकरणों को ऑनलाइन हल करना.. समीकरण ऑनलाइन.. ऑनलाइन समीकरण के बजाय, हम प्रस्तुत करेंगे कि समान अभिव्यक्ति कैसे बनती है रैखिक निर्भरताऔर न केवल एक सीधी स्पर्शरेखा के साथ, बल्कि ग्राफ के बहुत ही विभक्ति बिंदु पर भी। विषय के अध्ययन में यह विधि हर समय अपरिहार्य है। अक्सर ऐसा होता है कि अनंत संख्याओं और लेखन सदिशों के माध्यम से समीकरणों का समाधान अंतिम मान तक पहुंच जाता है। प्रारंभिक डेटा की जांच करना आवश्यक है और यह कार्य का सार है। अन्यथा, स्थानीय स्थिति को एक सूत्र में बदल दिया जाता है। से सीधी रेखा उलटा दिया गया कार्य, जो समीकरण कैलकुलेटर निष्पादन में बहुत देरी के बिना गणना करेगा, अंतरिक्ष का विशेषाधिकार एक जाल के रूप में काम करेगा। यह वैज्ञानिक वातावरण में छात्र के प्रदर्शन के बारे में होगा। हालाँकि, उपरोक्त सभी की तरह, यह हमें खोजने की प्रक्रिया में मदद करेगा, और जब आप समीकरण को पूरी तरह से हल कर लेंगे, तो उत्तर को सीधी रेखा खंड के सिरों पर सहेजें। अंतरिक्ष में रेखाएँ एक बिंदु पर प्रतिच्छेद करती हैं, और इस बिंदु को रेखाओं द्वारा प्रतिच्छेदित कहा जाता है। रेखा पर अंतराल को पहले दिए गए के रूप में चिह्नित किया गया है। गणित के अध्ययन पर सर्वोच्च पद प्रकाशित किया जाएगा। एक पैरामीट्रिक रूप से परिभाषित सतह से एक तर्क मान निर्दिष्ट करना और एक समीकरण को ऑनलाइन हल करना एक उत्पादक फ़ंक्शन कॉल के सिद्धांतों को इंगित करने में सक्षम होगा। मोबियस पट्टी, या जैसा कि इसे अनंत कहा जाता है, एक आकृति आठ की तरह दिखती है। यह एक तरफा सतह है, दो तरफा नहीं। सभी के लिए प्रसिद्ध सिद्धांत के अनुसार, हम मूल रूप से रैखिक समीकरणों को मूल पदनाम के रूप में स्वीकार करेंगे क्योंकि वे अध्ययन के क्षेत्र में हैं। क्रमिक रूप से दिए गए तर्कों के केवल दो मान वेक्टर की दिशा को प्रकट करने में सक्षम हैं। यह मानने के लिए कि ऑनलाइन समीकरणों का एक अलग समाधान केवल हल करने से कहीं अधिक है, इसका मतलब आउटपुट पर अपरिवर्तनीय का पूर्ण संस्करण प्राप्त करना है। बिना संकलित दृष्टिकोणछात्रों के लिए इस सामग्री को सीखना मुश्किल है। पहले की तरह, प्रत्येक विशेष मामले के लिए, हमारा सुविधाजनक और स्मार्ट ऑनलाइन समीकरण कैलकुलेटर कठिन समय में सभी की मदद करेगा, क्योंकि आपको केवल इनपुट पैरामीटर निर्दिष्ट करने की आवश्यकता है और सिस्टम स्वयं उत्तर की गणना करेगा। इससे पहले कि हम डेटा दर्ज करना शुरू करें, हमें एक इनपुट टूल की आवश्यकता होती है, जो बिना किसी कठिनाई के किया जा सकता है। प्रत्येक प्रतिक्रिया स्कोर की संख्या एक द्विघात समीकरण होगी जो हमारे निष्कर्षों की ओर ले जाएगी, लेकिन ऐसा करना इतना आसान नहीं है, क्योंकि इसके विपरीत साबित करना आसान है। सिद्धांत, अपनी विशिष्टताओं के कारण, व्यावहारिक ज्ञान द्वारा समर्थित नहीं है। उत्तर प्रकाशित करने के चरण में अंश कैलकुलेटर देखना गणित में आसान काम नहीं है, क्योंकि सेट पर संख्या लिखने का विकल्प फ़ंक्शन की वृद्धि को बढ़ाता है। हालांकि, छात्रों के प्रशिक्षण के बारे में नहीं कहना गलत होगा, इसलिए हम प्रत्येक को उतना ही व्यक्त करेंगे जितना करना आवश्यक है। पहले पाया गया घन समीकरण सही रूप से परिभाषा के क्षेत्र से संबंधित होगा, और इसमें संख्यात्मक मानों के साथ-साथ प्रतीकात्मक चर भी शामिल होंगे। प्रमेय को सीखने या याद रखने के बाद, हमारे छात्र केवल किसके साथ स्वयं को सिद्ध करेंगे? बेहतर पक्ष और हम उनके लिए प्रसन्न होंगे। खेतों के चौराहों के सेट के विपरीत, हमारे ऑनलाइन समीकरणों को दो और तीन संख्यात्मक संयुक्त रेखाओं के गुणन के साथ गति के एक विमान द्वारा वर्णित किया जाता है। गणित में एक समुच्चय विशिष्ट रूप से परिभाषित नहीं है। छात्रों के अनुसार, सबसे अच्छा समाधान अंत तक पूर्ण लिखित अभिव्यक्ति है। जैसा कि वैज्ञानिक भाषा में कहा गया है, सांकेतिक अभिव्यक्तियों का अमूर्तन मामलों की स्थिति में शामिल नहीं है, लेकिन समीकरणों का समाधान सभी ज्ञात मामलों में एक स्पष्ट परिणाम देता है। शिक्षक सत्र की अवधि इस प्रस्ताव में आवश्यकताओं पर आधारित है। विश्लेषण ने कई क्षेत्रों में सभी कम्प्यूटेशनल तकनीकों की आवश्यकता को दिखाया, और यह बिल्कुल स्पष्ट है कि समीकरण कैलकुलेटर एक छात्र के प्रतिभाशाली हाथों में एक अनिवार्य उपकरण है। गणित के अध्ययन के लिए एक निष्ठावान दृष्टिकोण विभिन्न दिशाओं के विचारों के महत्व को निर्धारित करता है। आप प्रमुख प्रमेयों में से एक को नामित करना चाहते हैं और समीकरण को इस तरह से हल करना चाहते हैं, जिसके उत्तर के आधार पर इसके आवेदन की और आवश्यकता होगी। इस क्षेत्र में विश्लेषिकी गति प्राप्त कर रही है। आइए शुरुआत से शुरू करें और सूत्र प्राप्त करें। फ़ंक्शन की वृद्धि के स्तर से टूटने के बाद, विभक्ति बिंदु पर स्पर्शरेखा रेखा अनिवार्य रूप से इस तथ्य की ओर ले जाएगी कि समीकरण को ऑनलाइन हल करना फ़ंक्शन तर्क से समान ग्राफ़ के निर्माण में मुख्य पहलुओं में से एक होगा। शौकिया दृष्टिकोण को लागू करने का अधिकार है यदि यह शर्त छात्रों के निष्कर्षों का खंडन नहीं करती है। यह उप-कार्य है जो गणितीय स्थितियों के विश्लेषण को ऑब्जेक्ट परिभाषा के मौजूदा डोमेन में रैखिक समीकरणों के रूप में रखता है जिसे पृष्ठभूमि में लाया जाता है। ऑर्थोगोनैलिटी की दिशा में ऑफसेट करने से एक अकेला निरपेक्ष मूल्य का लाभ रद्द हो जाता है। मोडुलो, समीकरणों को ऑनलाइन हल करने से समान संख्या में समाधान मिलते हैं, यदि आप कोष्ठक को पहले धन चिह्न के साथ खोलते हैं, और फिर ऋण चिह्न के साथ। इस मामले में, दोगुने समाधान हैं, और परिणाम अधिक सटीक होगा। एक स्थिर और सही ऑनलाइन समीकरण कैलकुलेटर शिक्षक द्वारा निर्धारित कार्य में इच्छित लक्ष्य को प्राप्त करने में सफलता है। महान वैज्ञानिकों के विचारों में महत्वपूर्ण अंतर के कारण आवश्यक विधि का चयन करना संभव प्रतीत होता है। परिणामी द्विघात समीकरण रेखाओं के वक्र, तथाकथित परवलय का वर्णन करता है, और चिन्ह वर्ग समन्वय प्रणाली में इसकी उत्तलता का निर्धारण करेगा। समीकरण से हम विएटा प्रमेय के अनुसार स्वयं विवेचक और मूल दोनों प्राप्त करते हैं। पहले चरण में व्यंजक को उचित या अनुचित भिन्न के रूप में प्रस्तुत करना और भिन्न कैलकुलेटर का उपयोग करना आवश्यक है। इसके आधार पर, हमारी आगे की गणना के लिए एक योजना बनाई जाएगी। सैद्धांतिक दृष्टिकोण वाला गणित हर स्तर पर उपयोगी होता है। हम निश्चित रूप से परिणाम को एक घन समीकरण के रूप में प्रस्तुत करेंगे, क्योंकि विश्वविद्यालय में एक छात्र के लिए कार्य को सरल बनाने के लिए हम इस अभिव्यक्ति में इसकी जड़ों को छिपाएंगे। कोई भी तरीका अच्छा है यदि वे सतही विश्लेषण के लिए उपयुक्त हैं। अतिरिक्त अंकगणितीय आपरेशनसगणना त्रुटियों का कारण नहीं होगा। दी गई सटीकता के साथ उत्तर निर्धारित करें। समीकरणों के हल का उपयोग करते हुए, आइए इसका सामना करते हैं - किसी दिए गए फ़ंक्शन का एक स्वतंत्र चर खोजना इतना आसान नहीं है, खासकर जब अनंत पर समानांतर रेखाओं का अध्ययन करना। अपवाद को देखते हुए, आवश्यकता बहुत स्पष्ट है। ध्रुवीयता अंतर स्पष्ट है। संस्थानों में अध्यापन के अनुभव से हमारे शिक्षक ने मुख्य पाठ सीखा, जिसमें समीकरणों का पूर्ण गणितीय अर्थ में ऑनलाइन अध्ययन किया गया। यहाँ यह सिद्धांत के अनुप्रयोग में उच्च प्रयासों और विशेष कौशल के बारे में था। हमारे निष्कर्षों के पक्ष में, किसी को चश्मे से नहीं देखना चाहिए। कुछ समय पहले तक, यह माना जाता था कि एक बंद सेट क्षेत्र में तेजी से बढ़ रहा है, और समीकरणों के समाधान की जांच की जरूरत है। पहले चरण में, हमने सभी पर विचार नहीं किया संभावित विकल्प, लेकिन ऐसा दृष्टिकोण पहले से कहीं अधिक उचित है। कोष्ठकों के साथ अतिरिक्त क्रियाएं कोर्डिनेट और एब्सिस्सा कुल्हाड़ियों के साथ कुछ प्रगति को सही ठहराती हैं, जिन्हें नग्न आंखों से अनदेखा नहीं किया जा सकता है। एक फ़ंक्शन के व्यापक आनुपातिक वृद्धि के अर्थ में एक विभक्ति बिंदु है। एक बार फिर, हम यह साबित करेंगे कि सदिश की एक या दूसरी अवरोही स्थिति के घटने के पूरे अंतराल पर आवश्यक शर्त कैसे लागू की जाएगी। एक सीमित स्थान में, हम अपनी स्क्रिप्ट के प्रारंभिक ब्लॉक से एक चर का चयन करेंगे। तीन वैक्टर के आधार पर बनाई गई प्रणाली बल के मुख्य क्षण की अनुपस्थिति के लिए जिम्मेदार है। हालाँकि, समीकरण कैलकुलेटर ने सतह के ऊपर और समानांतर रेखाओं के साथ, निर्मित समीकरण के सभी शब्दों को खोजने में मदद की और मदद की। आइए शुरुआती बिंदु के चारों ओर एक वृत्त का वर्णन करें। इस प्रकार, हम खंड रेखाओं के साथ ऊपर जाना शुरू करेंगे, और स्पर्शरेखा वृत्त को उसकी पूरी लंबाई के साथ वर्णित करेगी, परिणामस्वरूप हमें एक वक्र प्राप्त होगा, जिसे एक व्युत्क्रम कहा जाता है। वैसे आइए इस वक्र के बारे में थोड़ा इतिहास की बात करते हैं। तथ्य यह है कि ऐतिहासिक रूप से गणित में शुद्ध अर्थों में स्वयं गणित की कोई अवधारणा नहीं थी जैसा कि आज है। पहले, सभी वैज्ञानिक एक सामान्य चीज़, यानी विज्ञान में लगे हुए थे। बाद में, कुछ सदियों बाद, जब वैज्ञानिक दुनिया बहुत बड़ी मात्रा में जानकारी से भरी हुई थी, तब भी मानवता ने कई विषयों को चुना। वे अभी भी अपरिवर्तित रहते हैं। और फिर भी हर साल, दुनिया भर के वैज्ञानिक यह साबित करने की कोशिश करते हैं कि विज्ञान असीमित है, और आप एक समीकरण को हल नहीं कर सकते जब तक आपको क्षेत्र का ज्ञान न हो। प्राकृतिक विज्ञान. अंतत: इसे समाप्त करना संभव नहीं होगा। इसके बारे में सोचना उतना ही व्यर्थ है जितना कि बाहर की हवा को गर्म करना। आइए उस अंतराल को खोजें जिस पर तर्क, अपने सकारात्मक मूल्य के साथ, तेजी से बढ़ती दिशा में मूल्य के मापांक को निर्धारित करता है। प्रतिक्रिया कम से कम तीन समाधान खोजने में मदद करेगी, लेकिन उन्हें जांचना आवश्यक होगा। आइए इस तथ्य से शुरू करें कि हमें अपनी वेबसाइट की अनूठी सेवा का उपयोग करके समीकरण को ऑनलाइन हल करने की आवश्यकता है। आइए दोनों भागों का परिचय दें दिया गया समीकरण, "सॉल्व करें" बटन दबाएं और हमें कुछ ही सेकंड में सटीक उत्तर मिल जाएगा। विशेष मामलों में, हम गणित पर एक पुस्तक लेंगे और अपने उत्तर की दोबारा जांच करेंगे, अर्थात् हम केवल उत्तर को देखेंगे और सब कुछ स्पष्ट हो जाएगा। वही परियोजना एक कृत्रिम निरर्थक समानांतर चतुर्भुज पर उड़ान भरेगी। इसके समानांतर पक्षों के साथ एक समांतर चतुर्भुज है, और यह सूत्रों में खोखले स्थान के संचय की आरोही प्रक्रिया के स्थानिक संबंध का अध्ययन करने के लिए कई सिद्धांतों और दृष्टिकोणों की व्याख्या करता है। प्राकृतिक देखो. अस्पष्ट रैखिक समीकरण हमारे सामान्य के साथ वांछित चर की निर्भरता को दर्शाते हैं इस पलनिर्णय द्वारा समय और किसी तरह वापस लेना और लाना आवश्यक है अनुचित अंशएक गैर तुच्छ मामले के लिए। हम सीधी रेखा पर दस बिंदुओं को चिह्नित करते हैं और प्रत्येक बिंदु के माध्यम से एक दी गई दिशा में और ऊपर की ओर उत्तलता के साथ एक वक्र खींचते हैं। बहुत कठिनाई के बिना, हमारा समीकरण कैलकुलेटर एक अभिव्यक्ति को इस तरह से प्रस्तुत करेगा कि नियमों की वैधता के लिए इसकी जांच रिकॉर्डिंग की शुरुआत में भी स्पष्ट होगी। पहली जगह में गणितज्ञों के लिए स्थिरता के विशेष प्रतिनिधित्व की प्रणाली, जब तक कि अन्यथा सूत्र द्वारा प्रदान नहीं किया जाता है। हम इसका उत्तर निकायों की एक प्लास्टिक प्रणाली की आइसोमॉर्फिक स्थिति पर एक रिपोर्ट की विस्तृत प्रस्तुति के साथ देंगे और समीकरणों का समाधान ऑनलाइन इस प्रणाली में प्रत्येक भौतिक बिंदु की गति का वर्णन करेगा। गहन अध्ययन के स्तर पर, अंतरिक्ष की कम से कम निचली परत के व्युत्क्रमण के प्रश्न को विस्तार से स्पष्ट करना आवश्यक होगा। फ़ंक्शन के असंततता के खंड पर आरोही, हम लागू करते हैं सामान्य विधिएक उत्कृष्ट शोधकर्ता, वैसे, हमारे देशवासी, और हम नीचे विमान के व्यवहार के बारे में बताएंगे। विश्लेषणात्मक रूप से दिए गए फ़ंक्शन की मजबूत विशेषताओं के कारण, हम प्राधिकरण की व्युत्पन्न सीमाओं के भीतर अपने इच्छित उद्देश्य के लिए केवल ऑनलाइन समीकरण कैलकुलेटर का उपयोग करते हैं। आगे तर्क करते हुए, हम समीकरण की एकरूपता पर अपनी समीक्षा को ही रोक देते हैं, अर्थात इसका दाहिना पक्ष शून्य के बराबर होता है। एक बार फिर, हम गणित में अपने निर्णय की शुद्धता की पुष्टि करेंगे। तुच्छ समाधान प्राप्त करने से बचने के लिए, हम सिस्टम की सशर्त स्थिरता की समस्या के लिए प्रारंभिक स्थितियों में कुछ समायोजन करेंगे। आइए एक द्विघात समीकरण की रचना करें, जिसके लिए हम सुप्रसिद्ध सूत्र का उपयोग करके दो प्रविष्टियाँ लिखते हैं और ऋणात्मक मूल ज्ञात करते हैं। यदि एक जड़ दूसरी और तीसरी जड़ों से पांच इकाइयों से अधिक है, तो मुख्य तर्क में परिवर्तन करके, हम उप-समस्या की प्रारंभिक स्थितियों को विकृत करते हैं। इसके मूल में, गणित में कुछ असामान्य हमेशा एक सकारात्मक संख्या के निकटतम सौवें हिस्से में वर्णित किया जा सकता है। सर्वर लोड के सर्वोत्तम क्षण में अंश कैलकुलेटर समान संसाधनों पर अपने समकक्षों से कई गुना बेहतर होता है। y-अक्ष के अनुदिश बढ़ रहे वेग सदिश की सतह पर, हम एक-दूसरे के विपरीत दिशाओं में मुड़ी हुई सात रेखाएँ खींचते हैं। असाइन किए गए फ़ंक्शन तर्क की अनुरूपता रिकवरी बैलेंस काउंटर की ओर ले जाती है। गणित में, इस घटना को एक घन समीकरण के माध्यम से काल्पनिक गुणांक के साथ-साथ घटती रेखाओं की द्विध्रुवीय प्रगति में दर्शाया जा सकता है। महत्वपूर्ण बिंदुउनके कई अर्थों और प्रगति में तापमान अंतर एक परिसर के अपघटन की प्रक्रिया का वर्णन करते हैं भिन्नात्मक कार्यगुणकों के लिए। यदि आपको समीकरण हल करने के लिए कहा जाता है, तो इसे इस मिनट में करने में जल्दबाजी न करें, निश्चित रूप से पहले पूरी कार्य योजना का मूल्यांकन करें, और उसके बाद ही सही दृष्टिकोण अपनाएं। अवश्य लाभ होगा। काम में आसानी स्पष्ट है, और गणित में भी ऐसा ही है। समीकरण को ऑनलाइन हल करें। सभी ऑनलाइन समीकरण संख्याओं या मापदंडों के एक निश्चित प्रकार के रिकॉर्ड होते हैं और एक चर जिसे परिभाषित करने की आवश्यकता होती है। इस बहुत ही चर की गणना करें, अर्थात्, मूल्यों के एक सेट के विशिष्ट मान या अंतराल खोजें, जिसके लिए पहचान संतुष्ट होगी। प्रारंभिक और अंतिम शर्तें सीधे निर्भर करती हैं। पर सामान्य निर्णयसमीकरणों में आमतौर पर कुछ चर और स्थिरांक शामिल होते हैं, जिन्हें निर्धारित करके, हम किसी दिए गए समस्या कथन के समाधान के पूरे परिवार प्राप्त करेंगे। सामान्य तौर पर, यह एक स्थानिक घन की कार्यक्षमता को 100 सेंटीमीटर के बराबर बढ़ाने की दिशा में निवेश किए गए प्रयासों को सही ठहराता है। आप किसी उत्तर की रचना के किसी भी स्तर पर प्रमेय या प्रमेयिका लागू कर सकते हैं। साइट धीरे-धीरे समीकरणों का एक कैलकुलेटर जारी करती है, यदि आवश्यक हो, तो उत्पादों के योग के किसी भी अंतराल पर दिखाएँ सबसे छोटा मान. आधे मामलों में, एक खोखली गेंद के रूप में ऐसी गेंद एक मध्यवर्ती उत्तर को अधिक हद तक निर्धारित करने की आवश्यकताओं को पूरा नहीं करती है। कम से कम y-अक्ष पर वेक्टर प्रतिनिधित्व घटने की दिशा में, यह अनुपात निस्संदेह पिछली अभिव्यक्ति की तुलना में अधिक इष्टतम होगा। उस घंटे में जब रैखिक कार्यों पर एक पूर्ण बिंदु विश्लेषण किया जाता है, हम वास्तव में, हमारे सभी जटिल संख्याओं और द्विध्रुवीय विमान रिक्त स्थान एकत्र करेंगे। परिणामी व्यंजक में एक चर को प्रतिस्थापित करके, आप चरणों में समीकरण को हल करेंगे और उच्च सटीकता के साथ सबसे विस्तृत उत्तर देंगे। एक बार फिर, गणित में अपने कार्यों की जाँच करना एक छात्र की ओर से एक अच्छा रूप होगा। भिन्नों के अनुपात में अनुपात शून्य वेक्टर की गतिविधि के सभी महत्वपूर्ण क्षेत्रों में परिणाम की अखंडता को निर्धारित करता है। किए गए कार्यों के अंत में तुच्छता की पुष्टि की जाती है। सरल कार्य सेट के साथ, छात्रों को कम से कम समय में ऑनलाइन समीकरण हल करने में कठिनाई नहीं हो सकती है, लेकिन सभी प्रकार के नियमों के बारे में मत भूलना। उपसमुच्चय अभिसारी अंकन के क्षेत्र में प्रतिच्छेद करते हैं। अलग-अलग मामलों में, उत्पाद ग़लती से फ़ैक्टराइज़ नहीं करता है। विश्वविद्यालयों और तकनीकी स्कूलों में छात्रों के लिए महत्वपूर्ण वर्गों के लिए गणितीय तकनीकों की मूल बातें पर हमारे पहले खंड में आपको समीकरण को ऑनलाइन हल करने में मदद मिलेगी। उदाहरणों का उत्तर देने से हमें कई दिनों तक इंतजार नहीं करना पड़ेगा, क्योंकि पिछली शताब्दी की शुरुआत में समाधानों की क्रमिक खोज के साथ वेक्टर विश्लेषण की सर्वोत्तम बातचीत की प्रक्रिया का पेटेंट कराया गया था। यह पता चला है कि आसपास की टीम के साथ जुड़ने के प्रयास व्यर्थ नहीं थे, स्पष्ट रूप से पहले स्थान पर कुछ और था। कई पीढ़ियों बाद, दुनिया भर के वैज्ञानिकों ने यह विश्वास दिलाया कि गणित विज्ञान की रानी है। चाहे वह बायां उत्तर हो या सही उत्तर, संपूर्ण शब्द अभी भी तीन पंक्तियों में लिखे जाने चाहिए, क्योंकि हमारे मामले में हम केवल मैट्रिक्स के गुणों के वेक्टर विश्लेषण के साथ स्पष्ट रूप से निपटेंगे। एक बंद प्रणाली के सभी भौतिक बिंदुओं के स्थान में गति के प्रक्षेपवक्र की गणना के सर्वोत्तम तरीकों के बारे में द्विघात समीकरणों के साथ-साथ गैर-रेखीय और रैखिक समीकरणों ने हमारी पुस्तक में एक विशेष स्थान लिया है। रैखिक विश्लेषण हमें विचार को जीवन में लाने में मदद करेगा डॉट उत्पादलगातार तीन वैक्टर। प्रत्येक सेटिंग के अंत में, प्रदर्शन किए जा रहे संख्यात्मक स्थान ओवरले के संदर्भ में अनुकूलित संख्यात्मक अपवादों को प्रस्तुत करके कार्य को आसान बना दिया जाता है। एक अन्य निर्णय एक वृत्त में त्रिभुज के मनमाने रूप में पाए गए उत्तर का विरोध नहीं करेगा। दो वैक्टर के बीच के कोण में आवश्यक मार्जिन प्रतिशत होता है और ऑनलाइन समीकरणों को हल करने से प्रारंभिक स्थितियों के विपरीत समीकरण के कुछ सामान्य मूल का पता चलता है। अपवाद फ़ंक्शन परिभाषा के क्षेत्र में सकारात्मक समाधान खोजने की पूरी अपरिहार्य प्रक्रिया में उत्प्रेरक की भूमिका निभाता है। यदि यह नहीं कहा जाता है कि आप कंप्यूटर का उपयोग नहीं कर सकते हैं, तो ऑनलाइन समीकरण कैलकुलेटर आपके कठिन कार्यों के लिए एकदम सही है। यह आपके सशर्त डेटा को सही प्रारूप में दर्ज करने के लिए पर्याप्त है और हमारा सर्वर कम से कम संभव समय में एक पूर्ण परिणामी प्रतिक्रिया जारी करेगा। एक घातीय कार्य एक रैखिक की तुलना में बहुत तेजी से बढ़ता है। यह चतुर पुस्तकालय साहित्य के तल्मूड द्वारा प्रमाणित है। सामान्य अर्थों में गणना करेंगे, जैसा कि तीन जटिल गुणांक वाले दिए गए द्विघात समीकरण करेंगे। अर्ध-तल के ऊपरी भाग में परवलय बिंदु के अक्षों के अनुदिश रेखीय समांतर गति को दर्शाता है। यहां यह शरीर के कार्य स्थान में संभावित अंतर का उल्लेख करने योग्य है। एक उप-इष्टतम परिणाम के बदले में, हमारा अंश कैलकुलेटर बैक एंड पर कार्यात्मक कार्यक्रमों की समीक्षा की गणितीय रेटिंग में पहले स्थान पर है। इस सेवा के उपयोग में आसानी को लाखों इंटरनेट उपयोगकर्ताओं द्वारा सराहा जाएगा। यदि आप इसका उपयोग करना नहीं जानते हैं, तो हमें आपकी सहायता करने में खुशी होगी। हम कई प्राथमिक स्कूली बच्चों के कार्यों से घन समीकरण को भी उजागर और उजागर करना चाहते हैं, जब आपको इसकी जड़ों को जल्दी से खोजने और एक विमान पर एक फ़ंक्शन ग्राफ़ प्लॉट करने की आवश्यकता होती है। उच्च डिग्रीप्रजनन सबसे कठिन में से एक है गणित की समस्यायेसंस्थान में और इसके अध्ययन के लिए पर्याप्त संख्या में घंटे आवंटित किए जाते हैं। सभी रैखिक समीकरणों की तरह, हमारे कई उद्देश्य नियमों का अपवाद नहीं है, विभिन्न दृष्टिकोणों से एक नज़र डालें, और यह प्रारंभिक शर्तों को निर्धारित करने के लिए सरल और पर्याप्त होगा। वृद्धि का अंतराल फ़ंक्शन के उत्तलता के अंतराल के साथ मेल खाता है। समीकरणों का समाधान ऑनलाइन। सिद्धांत का अध्ययन मुख्य अनुशासन के अध्ययन पर कई वर्गों से ऑनलाइन समीकरणों पर आधारित है। अनिश्चित समस्याओं में इस तरह के दृष्टिकोण के मामले में, पूर्व निर्धारित रूप में समीकरणों के समाधान को प्रस्तुत करना और न केवल निष्कर्ष निकालना, बल्कि इस तरह के सकारात्मक समाधान के परिणाम की भविष्यवाणी करना भी बहुत आसान है। सेवा हमें गणित की सर्वोत्तम परंपराओं में विषय क्षेत्र को सीखने में मदद करेगी, जैसा कि पूर्व में प्रथागत है। समय अंतराल के सर्वोत्तम क्षणों में, समान कार्यों को एक सामान्य गुणक से दस गुना गुणा किया जाता था। समीकरण कैलकुलेटर में कई चर के गुणन की बहुतायत के साथ, यह गुणवत्ता से गुणा करना शुरू कर देता है, न कि मात्रात्मक चर से, जैसे कि द्रव्यमान या शरीर के वजन के रूप में। भौतिक प्रणाली के असंतुलन के मामलों से बचने के लिए, गैर-पतित गणितीय मैट्रिक्स के तुच्छ अभिसरण पर त्रि-आयामी कनवर्टर की व्युत्पत्ति हमारे लिए काफी स्पष्ट है। कार्य को पूरा करें और दिए गए निर्देशांक में समीकरण को हल करें, क्योंकि आउटपुट पहले से अज्ञात है, साथ ही पोस्ट-स्पेस समय में शामिल सभी चर अज्ञात हैं। पर लघु अवधिकोष्ठक के बाहर उभयनिष्ठ गुणनखंड को स्थानांतरित करें और पहले से दोनों भागों के सबसे बड़े सामान्य भाजक से विभाजित करें। संख्याओं के परिणामी कवर किए गए उपसमुच्चय के तहत, एक छोटी अवधि में एक पंक्ति में तैंतीस अंक विस्तृत तरीके से निकालें। इनोफ़र के रूप में in अपने सर्वोत्तम स्तर परप्रत्येक छात्र के लिए ऑनलाइन समीकरण हल करना संभव है, आगे देखते हुए, एक महत्वपूर्ण, लेकिन महत्वपूर्ण बात कहते हैं, जिसके बिना भविष्य में जीना आसान नहीं होगा। पिछली शताब्दी में, महान वैज्ञानिक ने गणित के सिद्धांत में कई नियमितताओं को देखा। व्यवहार में, यह घटनाओं की अपेक्षित छाप नहीं निकला। हालांकि, सिद्धांत रूप में, ऑनलाइन समीकरणों का यह बहुत ही समाधान छात्रों द्वारा कवर की गई सैद्धांतिक सामग्री के अध्ययन और व्यावहारिक समेकन के लिए एक समग्र दृष्टिकोण की समझ और धारणा को बेहतर बनाने में मदद करता है। अपने अध्ययन के समय में ऐसा करना बहुत आसान है।

=

कक्षा 8 में द्विघात समीकरणों का अध्ययन किया जाता है, इसलिए यहाँ कुछ भी जटिल नहीं है। उन्हें हल करने की क्षमता जरूरी है।

द्विघात समीकरण ax 2 + bx + c = 0 के रूप का एक समीकरण है, जहां गुणांक a , b और c मनमानी संख्याएं हैं, और a 0।

विशिष्ट समाधान विधियों का अध्ययन करने से पहले, हम ध्यान दें कि सभी द्विघात समीकरणों को तीन वर्गों में विभाजित किया जा सकता है:

  1. कोई जड़ नहीं है;
  2. उनकी ठीक एक जड़ है;
  3. उनकी दो अलग-अलग जड़ें हैं।

यह द्विघात और रैखिक समीकरणों के बीच एक महत्वपूर्ण अंतर है, जहां मूल हमेशा मौजूद होता है और अद्वितीय होता है। कैसे निर्धारित करें कि एक समीकरण की कितनी जड़ें हैं? इसमें एक अद्भुत बात है - विभेदक.

विभेदक

मान लीजिए कि द्विघात समीकरण ax 2 + bx + c = 0 दिया गया है, तो विवेचक केवल संख्या D = b 2 − 4ac है।

इस सूत्र को दिल से जानना चाहिए। यह कहां से आता है यह अब महत्वपूर्ण नहीं है। एक और बात महत्वपूर्ण है: विवेचक के चिह्न से, आप यह निर्धारित कर सकते हैं कि द्विघात समीकरण की कितनी जड़ें हैं। अर्थात्:

  1. अगर डी< 0, корней нет;
  2. यदि D = 0 है, तो ठीक एक मूल है;
  3. यदि D > 0, तो दो मूल होंगे।

कृपया ध्यान दें: विवेचक जड़ों की संख्या को इंगित करता है, न कि उनके सभी संकेतों को, जैसा कि किसी कारण से बहुत से लोग सोचते हैं। उदाहरणों पर एक नज़र डालें और आप खुद ही सब कुछ समझ जाएंगे:

एक कार्य। द्विघात समीकरणों की कितनी जड़ें होती हैं:

  1. एक्स 2 - 8x + 12 = 0;
  2. 5x2 + 3x + 7 = 0;
  3. एक्स 2 - 6x + 9 = 0।

हम पहले समीकरण के लिए गुणांक लिखते हैं और विवेचक पाते हैं:
ए = 1, बी = -8, सी = 12;
डी = (−8) 2 - 4 1 12 = 64 - 48 = 16

तो, विवेचक सकारात्मक है, इसलिए समीकरण की दो अलग-अलग जड़ें हैं। हम दूसरे समीकरण का उसी तरह विश्लेषण करते हैं:
ए = 5; बी = 3; सी = 7;
डी \u003d 3 2 - 4 5 7 \u003d 9 - 140 \u003d -131।

विभेदक नकारात्मक है, कोई जड़ नहीं है। अंतिम समीकरण रहता है:
ए = 1; बी = -6; सी = 9;
डी = (-6) 2 - 4 1 9 = 36 - 36 = 0।

विवेचक शून्य के बराबर है - मूल एक होगा।

ध्यान दें कि प्रत्येक समीकरण के लिए गुणांक लिखे गए हैं। हां, यह लंबा है, हां, यह थकाऊ है - लेकिन आप बाधाओं को नहीं मिलाएंगे और मूर्खतापूर्ण गलतियां नहीं करेंगे। अपने लिए चुनें: गति या गुणवत्ता।

वैसे, यदि आप "अपना हाथ भरते हैं", तो थोड़ी देर बाद आपको सभी गुणांक लिखने की आवश्यकता नहीं होगी। आप अपने सिर में ऐसे ऑपरेशन करेंगे। ज्यादातर लोग 50-70 हल समीकरणों के बाद कहीं ऐसा करना शुरू करते हैं - सामान्य तौर पर, इतने नहीं।

द्विघात समीकरण की जड़ें

अब चलिए समाधान की ओर बढ़ते हैं। यदि विभेदक D > 0 है, तो सूत्रों का उपयोग करके जड़ों को पाया जा सकता है:

द्विघात समीकरण के मूल का मूल सूत्र

जब डी = 0, आप इनमें से किसी भी सूत्र का उपयोग कर सकते हैं - आपको वही संख्या मिलती है, जिसका उत्तर होगा। अंत में, यदि डी< 0, корней нет — ничего считать не надо.

  1. एक्स 2 - 2x - 3 = 0;
  2. 15 - 2x - x2 = 0;
  3. x2 + 12x + 36 = 0.

पहला समीकरण:
एक्स 2 - 2x - 3 = 0 ए = 1; बी = -2; सी = -3;
डी = (-2) 2 - 4 1 (-3) = 16।

D > 0 समीकरण के दो मूल हैं। आइए उन्हें ढूंढते हैं:

दूसरा समीकरण:
15 − 2x - x 2 = 0 a = −1; बी = -2; सी = 15;
डी = (-2) 2 - 4 (-1) 15 = 64।

D > 0 समीकरण के दो मूल हैं। आइए उन्हें ढूंढते हैं

\[\begin(align) & ((x)_(1))=\frac(2+\sqrt(64))(2\cdot \left(-1 \right))=-5; \\ & ((x)_(2))=\frac(2-\sqrt(64))(2\cdot \left(-1 \right))=3. \\ \अंत (संरेखित करें)\]

अंत में, तीसरा समीकरण:
एक्स 2 + 12x + 36 = 0 ए = 1; बी = 12; सी = 36;
डी = 12 2 - 4 1 36 = 0।

D = 0 समीकरण का एक मूल है। किसी भी सूत्र का उपयोग किया जा सकता है। उदाहरण के लिए, पहला वाला:

जैसा कि आप उदाहरणों से देख सकते हैं, सब कुछ बहुत सरल है। यदि आप सूत्र जानते हैं और गिनने में सक्षम हैं, तो कोई समस्या नहीं होगी। अक्सर, त्रुटियाँ तब होती हैं जब सूत्र में ऋणात्मक गुणांकों को प्रतिस्थापित किया जाता है। यहां, फिर से, ऊपर वर्णित तकनीक मदद करेगी: सूत्र को शाब्दिक रूप से देखें, प्रत्येक चरण को पेंट करें - और बहुत जल्द गलतियों से छुटकारा पाएं।

अपूर्ण द्विघात समीकरण

ऐसा होता है कि द्विघात समीकरण परिभाषा में दी गई चीज़ों से कुछ अलग है। उदाहरण के लिए:

  1. x2 + 9x = 0;
  2. x2 - 16 = 0.

यह देखना आसान है कि इन समीकरणों में से एक पद गायब है। इस तरह के द्विघात समीकरणों को मानक समीकरणों की तुलना में हल करना और भी आसान है: उन्हें विवेचक की गणना करने की भी आवश्यकता नहीं है। तो चलिए एक नई अवधारणा पेश करते हैं:

समीकरण कुल्हाड़ी 2 + बीएक्स + सी = 0 को अपूर्ण द्विघात समीकरण कहा जाता है यदि बी = 0 या सी = 0, अर्थात। चर x या मुक्त तत्व का गुणांक शून्य के बराबर है।

बेशक, एक बहुत ही कठिन मामला संभव है जब ये दोनों गुणांक शून्य के बराबर हों: b \u003d c \u003d 0. इस मामले में, समीकरण कुल्हाड़ी 2 \u003d 0 का रूप लेता है। जाहिर है, इस तरह के समीकरण में एक एकल होता है जड़: x \u003d 0.

आइए अन्य मामलों पर विचार करें। चलो बी \u003d 0, फिर हमें फॉर्म कुल्हाड़ी 2 + सी \u003d 0 का अधूरा द्विघात समीकरण मिलता है। आइए इसे थोड़ा रूपांतरित करें:

क्योंकि अंकगणित वर्गमूलकेवल एक गैर-ऋणात्मक संख्या से मौजूद है, अंतिम समानता केवल (−c /a ) 0 के लिए समझ में आता है। निष्कर्ष:

  1. यदि ax 2 + c = 0 के रूप का अपूर्ण द्विघात समीकरण असमानता (−c / a ) 0 को संतुष्ट करता है, तो दो मूल होंगे। सूत्र ऊपर दिया गया है;
  2. अगर (-सी / ए)< 0, корней нет.

जैसा कि आप देख सकते हैं, विवेचक की आवश्यकता नहीं थी - अपूर्ण द्विघात समीकरणों में कोई जटिल गणना नहीं है। वास्तव में, असमानता (−c / a ) 0 को याद रखना भी आवश्यक नहीं है। यह x 2 के मान को व्यक्त करने और समान चिह्न के दूसरी तरफ देखने के लिए पर्याप्त है। यदि कोई धनात्मक संख्या है, तो दो मूल होंगे। यदि ऋणात्मक है, तो जड़ें बिल्कुल नहीं होंगी।

अब आइए फार्म ax 2 + bx = 0 के समीकरणों से निपटें, जिसमें मुक्त तत्व शून्य के बराबर है। यहां सब कुछ सरल है: हमेशा दो जड़ें होंगी। यह बहुपद का गुणनखंड करने के लिए पर्याप्त है:

उभयनिष्ठ गुणनखंड को कोष्ठक से बाहर निकालना

उत्पाद शून्य के बराबर होता है जब कम से कम एक कारक शून्य के बराबर होता है। यहीं से जड़ें निकलती हैं। अंत में, हम इनमें से कई समीकरणों का विश्लेषण करेंगे:

एक कार्य। द्विघात समीकरणों को हल करें:

  1. x2 - 7x = 0;
  2. 5x2 + 30 = 0;
  3. 4x2 - 9 = 0.

x 2 - 7x = 0 ⇒ x (x - 7) = 0 x 1 = 0; x2 = -(−7)/1 = 7.

5x2 + 30 = 0 5x2 = -30 ⇒ x2 = -6। कोई जड़ें नहीं हैं, क्योंकि वर्ग एक ऋणात्मक संख्या के बराबर नहीं हो सकता।

4x 2 - 9 = 0 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1.5; एक्स 2 \u003d -1.5।

समीकरणों का उपयोग हमारे जीवन में व्यापक है। उनका उपयोग कई गणनाओं, संरचनाओं के निर्माण और यहां तक ​​कि खेलकूद में भी किया जाता है। प्राचीन काल से ही मनुष्य द्वारा समीकरणों का उपयोग किया जाता रहा है और तब से उनका उपयोग केवल बढ़ा है। घातांक या घातांकीय समीकरण ऐसे समीकरण कहलाते हैं जिनमें चर घात में हों और आधार एक संख्या हो। उदाहरण के लिए:

घातांकीय समीकरण का हल घटकर 2 हो जाता है सरल क्रिया:

1. यह जाँचना आवश्यक है कि क्या दायीं और बायीं ओर के समीकरण के आधार समान हैं। यदि आधार समान नहीं हैं, तो हम इस उदाहरण को हल करने के लिए विकल्पों की तलाश कर रहे हैं।

2. आधार समान होने के बाद, हम अंशों की बराबरी करते हैं और परिणामी नए समीकरण को हल करते हैं।

मान लीजिए कि हमें निम्नलिखित रूप का एक घातीय समीकरण दिया गया है:

आधार के विश्लेषण के साथ इस समीकरण का समाधान शुरू करना उचित है। आधार अलग-अलग हैं - 2 और 4, और समाधान के लिए हमें उनका समान होना चाहिए, इसलिए हम निम्नलिखित सूत्र के अनुसार 4 को रूपांतरित करते हैं - \ [ (a ^ n) ^ m = a ^ (nm): \]

मूल समीकरण में जोड़ें:

आइए कोष्ठक निकालते हैं \

अभिव्यक्त करना \

चूंकि डिग्रियां समान हैं, इसलिए हम उन्हें त्याग देते हैं:

उत्तर: \

मैं सॉल्वर के साथ घातांकीय समीकरण को ऑनलाइन कहां हल कर सकता हूं?

आप हमारी वेबसाइट https: // साइट पर समीकरण को हल कर सकते हैं। मुफ्त ऑनलाइन सॉल्वर आपको किसी भी जटिलता के ऑनलाइन समीकरण को कुछ ही सेकंड में हल करने की अनुमति देगा। आपको बस इतना करना है कि सॉल्वर में अपना डेटा डालें। आप वीडियो निर्देश भी देख सकते हैं और हमारी वेबसाइट पर समीकरण को हल करना सीख सकते हैं। और यदि आपके कोई प्रश्न हैं, तो आप उन्हें हमारे Vkontakte समूह http://vk.com/pocketteacher में पूछ सकते हैं। हमारे समूह में शामिल हों, हम आपकी मदद करने के लिए हमेशा खुश हैं।

 

कृपया इस लेख को सोशल मीडिया पर साझा करें यदि यह मददगार था!